Emerging infectious diseases2015; 21(2); 328-331; doi: 10.3201/eid2102.141433

Outbreak of henipavirus infection, Philippines, 2014.

Abstract: During 2014, henipavirus infection caused severe illness among humans and horses in southern Philippines; fatality rates among humans were high. Horse-to-human and human-to-human transmission occurred. The most likely source of horse infection was fruit bats. Ongoing surveillance is needed for rapid diagnosis, risk factor investigation, control measure implementation, and further virus characterization.
Publication Date: 2015-01-28 PubMed ID: 25626011PubMed Central: PMC4313660DOI: 10.3201/eid2102.141433Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Historical Article
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article highlights a severe outbreak of henipavirus infection in southern Philippines during 2014. The infection spread through horses to humans and also observed human-to-human transmission with high fatality rates. Fruit bats are believed to be the primary source of the infection in horses.

Overview of the Henipavirus Outbreak

  • The study takes a detailed look into an outbreak of the henipavirus infection that took place in the southern Philippines in 2014.
  • The infection appears to have caused severe illness among both humans and horses, with the fatality rate among humans being significantly high.
  • The occurrence of both horse-to-human and human-to-human transmission was documented during this outbreak.

Source of Infection in Horses

  • Evidence proposes that the most probable source of infection in the horses was fruit bats.
  • Bats are considered natural reservoirs for many viruses and these flying mammals often do not show signs of disease. However, they can pass the viruses onto other species, in this case, horses.

Importance of Ongoing Surveillance

  • This paper also emphasizes the importance of ongoing surveillance, that is, the continuous inspection and evaluation of the disease and its transmission.
  • Surveillance is crucial for rapid diagnosis of disease, identifying risk factors, implementing control measures effectively, and for further characterization of the virus.

Impact and Relevance of this Research

  • This study provides key insights into the transmission and outbreak patterns of the henipavirus, which can assist in the formation of strategies to control future outbreaks.
  • This research also directs attention towards the role of wildlife, such as bats, in the transmission of maverick viruses to domestic animals and humans.

Cite This Article

APA
Ching PK, de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB, Malbas FF, Bolo GC, Sejvar JJ, Eagles D, Playford G, Dueger E, Kaku Y, Morikawa S, Kuroda M, Marsh GA, McCullough S, Foxwell AR. (2015). Outbreak of henipavirus infection, Philippines, 2014. Emerg Infect Dis, 21(2), 328-331. https://doi.org/10.3201/eid2102.141433

Publication

ISSN: 1080-6059
NlmUniqueID: 9508155
Country: United States
Language: English
Volume: 21
Issue: 2
Pages: 328-331

Researcher Affiliations

Ching, Paola Katrina G
    de los Reyes, Vikki Carr
      Sucaldito, Maria Nemia
        Tayag, Enrique
          Columna-Vingno, Alah Baby
            Malbas, Fedelino F
              Bolo, Gilbert C
                Sejvar, James J
                  Eagles, Debbie
                    Playford, Geoffrey
                      Dueger, Erica
                        Kaku, Yoshihiro
                          Morikawa, Shigeru
                            Kuroda, Makoto
                              Marsh, Glenn A
                                McCullough, Sam
                                  Foxwell, A Ruth

                                    MeSH Terms

                                    • Adolescent
                                    • Adult
                                    • Animal Diseases / epidemiology
                                    • Animal Diseases / virology
                                    • Animals
                                    • Base Sequence
                                    • Child
                                    • Child, Preschool
                                    • Disease Outbreaks
                                    • Female
                                    • Henipavirus / classification
                                    • Henipavirus / genetics
                                    • Henipavirus Infections / diagnosis
                                    • Henipavirus Infections / epidemiology
                                    • Henipavirus Infections / history
                                    • History, 21st Century
                                    • Humans
                                    • Male
                                    • Middle Aged
                                    • Molecular Sequence Data
                                    • Molecular Typing
                                    • Philippines / epidemiology
                                    • Phylogeny
                                    • Population Surveillance
                                    • Sequence Alignment
                                    • Serotyping
                                    • Viral Proteins / chemistry
                                    • Viral Proteins / genetics
                                    • Young Adult

                                    References

                                    This article includes 15 references
                                    1. Aljofan M. Hendra and Nipah infection: emerging paramyxoviruses.. Virus Res 2013 Nov 6;177(2):119-26.
                                    2. Field HE, Mackenzie JS, Daszak P. Henipaviruses: emerging paramyxoviruses associated with fruit bats.. Curr Top Microbiol Immunol 2007;315:133-59.
                                      doi: 10.1007/978-3-540-70962-6_7pmc: PMC7121910pubmed: 17848064google scholar: lookup
                                    3. Ksiazek TG, Rota PA, Rollin PE. A review of Nipah and Hendra viruses with an historical aside.. Virus Res 2011 Dec;162(1-2):173-83.
                                    4. Mahalingam S, Herrero LJ, Playford EG, Spann K, Herring B, Rolph MS, Middleton D, McCall B, Field H, Wang LF. Hendra virus: an emerging paramyxovirus in Australia.. Lancet Infect Dis 2012 Oct;12(10):799-807.
                                      doi: 10.1016/S1473-3099(12)70158-5pubmed: 22921953google scholar: lookup
                                    5. Playford EG, McCall B, Smith G, Slinko V, Allen G, Smith I, Moore F, Taylor C, Kung YH, Field H. Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008.. Emerg Infect Dis 2010 Feb;16(2):219-23.
                                      doi: 10.3201/eid1602.090552pmc: PMC2957996pubmed: 20113550google scholar: lookup
                                    6. Sahani M, Parashar UD, Ali R, Das P, Lye MS, Isa MM, Arif MT, Ksiazek TG, Sivamoorthy M. Nipah virus infection among abattoir workers in Malaysia, 1998-1999.. Int J Epidemiol 2001 Oct;30(5):1017-20.
                                      doi: 10.1093/ije/30.5.1017pubmed: 11689513google scholar: lookup
                                    7. Bellini WJ, Harcourt BH, Bowden N, Rota PA. Nipah virus: an emergent paramyxovirus causing severe encephalitis in humans.. J Neurovirol 2005 Oct;11(5):481-7.
                                      doi: 10.1080/13550280500187435pubmed: 16287690google scholar: lookup
                                    8. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin I, Niezgoda M, Rupprecht C, Bresee J, Breiman RF. Nipah virus encephalitis reemergence, Bangladesh.. Emerg Infect Dis 2004 Dec;10(12):2082-7.
                                      doi: 10.3201/eid1012.040701pmc: PMC3323384pubmed: 15663842google scholar: lookup
                                    9. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra A. Nipah virus-associated encephalitis outbreak, Siliguri, India.. Emerg Infect Dis 2006 Feb;12(2):235-40.
                                      doi: 10.3201/eid1202.051247pmc: PMC3373078pubmed: 16494748google scholar: lookup
                                    10. Field HE. Bats and emerging zoonoses: henipaviruses and SARS.. Zoonoses Public Health 2009 Aug;56(6-7):278-84.
                                    11. Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU, Rahman M, Gurley ES, Rollin PE, Lo MK, Comer JA, Lowe L, Rota PA, Ksiazek TG, Kenah E, Sharker Y, Luby SP. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008.. Vector Borne Zoonotic Dis 2012 Jan;12(1):65-72.
                                      doi: 10.1089/vbz.2011.0656pubmed: 21923274google scholar: lookup
                                    12. Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, Molla MA, Carroll DS, Ksiazek TG, Rota PA, Lowe L, Comer JA, Rollin P, Czub M, Grolla A, Feldmann H, Luby SP, Woodward JL, Breiman RF. Person-to-person transmission of Nipah virus in a Bangladeshi community.. Emerg Infect Dis 2007 Jul;13(7):1031-7.
                                      doi: 10.3201/eid1307.061128pmc: PMC2878219pubmed: 18214175google scholar: lookup
                                    13. Luby SP, Gurley ES, Hossain MJ. Transmission of human infection with Nipah virus.. Clin Infect Dis 2009 Dec 1;49(11):1743-8.
                                      doi: 10.1086/647951pmc: PMC2784122pubmed: 19886791google scholar: lookup
                                    14. Daniels P, Ksiazek T, Eaton BT. Laboratory diagnosis of Nipah and Hendra virus infections.. Microbes Infect 2001 Apr;3(4):289-95.
                                      doi: 10.1016/S1286-4579(01)01382-Xpubmed: 11334746google scholar: lookup
                                    15. Kaku Y, Noguchi A, Marsh GA, Barr JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase.. J Virol Methods 2012 Jan;179(1):226-32.

                                    Citations

                                    This article has been cited 89 times.
                                    1. Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection.. Methods Mol Biol 2023;2682:1-22.
                                      doi: 10.1007/978-1-0716-3283-3_1pubmed: 37610570google scholar: lookup
                                    2. Li H, Kim JV, Pickering BS. Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence.. Front Microbiol 2023;14:1167085.
                                      doi: 10.3389/fmicb.2023.1167085pubmed: 37529329google scholar: lookup
                                    3. Azuero OC, Lefrancq N, Nikolay B, McKee C, Cappelle J, Hul V, Ou TP, Hoem T, Lemey P, Rahman MZ, Islam A, Gurley ES, Duong V, Salje H. The genetic diversity of Nipah virus across spatial scales.. medRxiv 2023 Jul 16;.
                                      doi: 10.1101/2023.07.14.23292668pubmed: 37502973google scholar: lookup
                                    4. Medina-Magu00fces ES, Lopera-Madrid J, Lo MK, Spiropoulou CF, Montgomery JM, Medina-Magu00fces LG, Salas-Quinchucua C, Jimu00e9nez-Mora AP, Osorio JE. Immunogenicity of poxvirus-based vaccines against Nipah virus.. Sci Rep 2023 Jul 14;13(1):11384.
                                      doi: 10.1038/s41598-023-38010-2pubmed: 37452062google scholar: lookup
                                    5. Nazmunnahar, Ahmed I, Roknuzzaman ASM, Islam MR. The recent Nipah virus outbreak in Bangladesh could be a threat for global public health: A brief report.. Health Sci Rep 2023 Jul;6(7):e1423.
                                      doi: 10.1002/hsr2.1423pubmed: 37448729google scholar: lookup
                                    6. Mohandas S, Shete A, Sarkale P, Kumar A, Mote C, Yadav P. Genomic characterization, transcriptome analysis, and pathogenicity of the Nipah virus (Indian isolate).. Virulence 2023 Dec;14(1):2224642.
                                      doi: 10.1080/21505594.2023.2224642pubmed: 37312405google scholar: lookup
                                    7. Byrne PO, Fisher BE, Ambrozak DR, Blade EG, Tsybovsky Y, Graham BS, McLellan JS, Loomis RJ. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein.. Nat Commun 2023 Mar 17;14(1):1494.
                                      doi: 10.1038/s41467-023-36995-ypubmed: 36932063google scholar: lookup
                                    8. Islam A, Cannon DL, Rahman MZ, Khan SU, Epstein JH, Daszak P, Luby SP, Montgomery JM, Klena JD, Gurley ES. Nipah Virus Exposure in Domestic and Peridomestic Animals Living in Human Outbreak Sites, Bangladesh, 2013-2015.. Emerg Infect Dis 2023 Feb;29(2):393-396.
                                      doi: 10.3201/eid2902.221379pubmed: 36692447google scholar: lookup
                                    9. Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis.. Animals (Basel) 2022 Dec 31;13(1).
                                      doi: 10.3390/ani13010159pubmed: 36611767google scholar: lookup
                                    10. Shete AM, Jain R, Mohandas S, Pardeshi P, Yadav PD, Gupta N, Mourya D. Development of Nipah virus-specific IgM & IgG ELISA for screening human serum samples.. Indian J Med Res 2022 Sep;156(3):429-434.
                                      doi: 10.4103/ijmr.ijmr_2737_21pubmed: 36510890google scholar: lookup
                                    11. Taylor J, Thompson K, Annand EJ, Massey PD, Bennett J, Eden JS, Horsburgh BA, Hodgson E, Wood K, Kerr J, Kirkland P, Finlaison D, Peel AJ, Eby P, Durrheim DN. Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia.. One Health 2022 Dec;15:100423.
                                      doi: 10.1016/j.onehlt.2022.100423pubmed: 36277112google scholar: lookup
                                    12. McKee CD, Islam A, Rahman MZ, Khan SU, Rahman M, Satter SM, Islam A, Yinda CK, Epstein JH, Daszak P, Munster VJ, Hudson PJ, Plowright RK, Luby SP, Gurley ES. Nipah Virus Detection at Bat Roosts after Spillover Events, Bangladesh, 2012-2019.. Emerg Infect Dis 2022 Jul;28(7):1384-1392.
                                      doi: 10.3201/eid2807.212614pubmed: 35731130google scholar: lookup
                                    13. Chaiyes A, Duengkae P, Suksavate W, Pongpattananurak N, Wacharapluesadee S, Olival KJ, Srikulnath K, Pattanakiat S, Hemachudha T. Mapping Risk of Nipah Virus Transmission from Bats to Humans in Thailand.. Ecohealth 2022 Jun;19(2):175-189.
                                      doi: 10.1007/s10393-022-01588-6pubmed: 35657574google scholar: lookup
                                    14. Latinne A, Morand S. Climate Anomalies and Spillover of Bat-Borne Viral Diseases in the Asia-Pacific Region and the Arabian Peninsula.. Viruses 2022 May 20;14(5).
                                      doi: 10.3390/v14051100pubmed: 35632842google scholar: lookup
                                    15. Lawrence P, Escudero-Pu00e9rez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models.. Viruses 2022 Apr 29;14(5).
                                      doi: 10.3390/v14050936pubmed: 35632678google scholar: lookup
                                    16. Foster SL, Woolsey C, Borisevich V, Agans KN, Prasad AN, Deer DJ, Geisbert JB, Dobias NS, Fenton KA, Cross RW, Geisbert TW. A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease.. Proc Natl Acad Sci U S A 2022 Mar 22;119(12):e2200065119.
                                      doi: 10.1073/pnas.2200065119pubmed: 35286211google scholar: lookup
                                    17. Annand EJ, Horsburgh BA, Xu K, Reid PA, Poole B, de Kantzow MC, Brown N, Tweedie A, Michie M, Grewar JD, Jackson AE, Singanallur NB, Plain KM, Kim K, Tachedjian M, van der Heide B, Crameri S, Williams DT, Secombe C, Laing ED, Sterling S, Yan L, Jackson L, Jones C, Plowright RK, Peel AJ, Breed AC, Diallo I, Dhand NK, Britton PN, Broder CC, Smith I, Eden JS. Novel Hendra Virus Variant Detected by Sentinel Surveillance of Horses in Australia.. Emerg Infect Dis 2022 Mar;28(3):693-704.
                                      doi: 10.3201/eid2803.211245pubmed: 35202527google scholar: lookup
                                    18. Kummer S, Kranz DC. Henipaviruses-A constant threat to livestock and humans.. PLoS Negl Trop Dis 2022 Feb;16(2):e0010157.
                                      doi: 10.1371/journal.pntd.0010157pubmed: 35180217google scholar: lookup
                                    19. Skowron K, Bauza-Kaszewska J, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Zacharski M, Bernaciak Z, Gospodarek-Komkowska E. Nipah Virus-Another Threat From the World of Zoonotic Viruses.. Front Microbiol 2021;12:811157.
                                      doi: 10.3389/fmicb.2021.811157pubmed: 35145498google scholar: lookup
                                    20. Pesce G, Gondelaud F, Ptchelkine D, Nilsson JF, Bignon C, Cartalas J, Fourquet P, Longhi S. Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins.. Int J Mol Sci 2022 Jan 15;23(2).
                                      doi: 10.3390/ijms23020923pubmed: 35055108google scholar: lookup
                                    21. Loomis RJ, DiPiazza AT, Falcone S, Ruckwardt TJ, Morabito KM, Abiona OM, Chang LA, Caringal RT, Presnyak V, Narayanan E, Tsybovsky Y, Nair D, Hutchinson GB, Stewart-Jones GBE, Kueltzo LA, Himansu S, Mascola JR, Carfi A, Graham BS. Chimeric Fusion (F) and Attachment (G) Glycoprotein Antigen Delivery by mRNA as a Candidate Nipah Vaccine.. Front Immunol 2021;12:772864.
                                      doi: 10.3389/fimmu.2021.772864pubmed: 34956199google scholar: lookup
                                    22. Aurine N, Baquerre C, Gaudino M, Jean C, Dumont C, Rival-Gervier S, Kress C, Horvat B, Pain B. Reprogrammed Pteropus Bat Stem Cells as A Model to Study Host-Pathogen Interaction during Henipavirus Infection.. Microorganisms 2021 Dec 11;9(12).
                                      doi: 10.3390/microorganisms9122567pubmed: 34946167google scholar: lookup
                                    23. Lewis CE, Pickering B. Livestock and Risk Group 4 Pathogens: Researching Zoonotic Threats to Public Health and Agriculture in Maximum Containment.. ILAR J 2022 Jan 7;61(1):86-102.
                                      doi: 10.1093/ilar/ilab029pubmed: 34864994google scholar: lookup
                                    24. Johnson K, Vu M, Freiberg AN. Recent advances in combating Nipah virus.. Fac Rev 2021;10:74.
                                      doi: 10.12703/r/10-74pubmed: 34632460google scholar: lookup
                                    25. Islam A, McKee C, Ghosh PK, Abedin J, Epstein JH, Daszak P, Luby SP, Khan SU, Gurley ES. Seasonality of Date Palm Sap Feeding Behavior by Bats in Bangladesh.. Ecohealth 2021 Sep;18(3):359-371.
                                      doi: 10.1007/s10393-021-01561-9pubmed: 34609649google scholar: lookup
                                    26. Salladini E, Gondelaud F, Nilsson JF, Pesce G, Bignon C, Murrali MG, Fabre R, Pierattelli R, Kajava AV, Horvat B, Gerlier D, Mathieu C, Longhi S. Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation.. Biomolecules 2021 Sep 7;11(9).
                                      doi: 10.3390/biom11091324pubmed: 34572537google scholar: lookup
                                    27. Williams EP, Spruill-Harrell BM, Taylor MK, Lee J, Nywening AV, Yang Z, Nichols JH, Camp JV, Owen RD, Jonsson CB. Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses.. Viruses 2021 Jul 31;13(8).
                                      doi: 10.3390/v13081509pubmed: 34452374google scholar: lookup
                                    28. Liang J, Zhu C, Zhang L. Cospeciation of coronavirus and paramyxovirus with their bat hosts in the same geographical areas.. BMC Ecol Evol 2021 Jul 29;21(1):148.
                                      doi: 10.1186/s12862-021-01878-7pubmed: 34325659google scholar: lookup
                                    29. Amaya M, Cheng H, Borisevich V, Navaratnarajah CK, Cattaneo R, Cooper L, Moore TW, Gaisina IN, Geisbert TW, Rong L, Broder CC. A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery.. Antiviral Res 2021 Sep;193:105084.
                                    30. Cheliout Da Silva S, Yan L, Dang HV, Xu K, Epstein JH, Veesler D, Broder CC. Functional Analysis of the Fusion and Attachment Glycoproteins of Mojiang Henipavirus.. Viruses 2021 Mar 22;13(3).
                                      doi: 10.3390/v13030517pubmed: 33809833google scholar: lookup
                                    31. McEntire CRS, Song KW, McInnis RP, Rhee JY, Young M, Williams E, Wibecan LL, Nolan N, Nagy AM, Gluckstein J, Mukerji SS, Mateen FJ. Neurologic Manifestations of the World Health Organization's List of Pandemic and Epidemic Diseases.. Front Neurol 2021;12:634827.
                                      doi: 10.3389/fneur.2021.634827pubmed: 33692745google scholar: lookup
                                    32. Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV. Evolution of Nipah Virus Infection: Past, Present, and Future Considerations.. Trop Med Infect Dis 2021 Feb 14;6(1).
                                      doi: 10.3390/tropicalmed6010024pubmed: 33672796google scholar: lookup
                                    33. Zamora JLR, Ortega V, Johnston GP, Li J, Aguilar HC. Novel Roles of the N1 Loop and N4 Alpha-Helical Region of the Nipah Virus Fusion Glycoprotein in Modulating Early and Late Steps of the Membrane Fusion Cascade.. J Virol 2021 Apr 12;95(9).
                                      doi: 10.1128/JVI.01707-20pubmed: 33568505google scholar: lookup
                                    34. Geisbert TW, Bobb K, Borisevich V, Geisbert JB, Agans KN, Cross RW, Prasad AN, Fenton KA, Yu H, Fouts TR, Broder CC, Dimitrov AS. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus.. NPJ Vaccines 2021 Feb 8;6(1):23.
                                      doi: 10.1038/s41541-021-00284-wpubmed: 33558494google scholar: lookup
                                    35. McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats.. Viruses 2021 Jan 23;13(2).
                                      doi: 10.3390/v13020169pubmed: 33498685google scholar: lookup
                                    36. Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Ali Khan S, Balkey MD, Ross N, Smith I, Zambrana-Torrelio C, Tao Y, Islam A, Quan PL, Olival KJ, Khan MSU, Gurley ES, Hossein MJ, Field HE, Fielder MD, Briese T, Rahman M, Broder CC, Crameri G, Wang LF, Luby SP, Lipkin WI, Daszak P. Nipah virus dynamics in bats and implications for spillover to humans.. Proc Natl Acad Sci U S A 2020 Nov 17;117(46):29190-29201.
                                      doi: 10.1073/pnas.2000429117pubmed: 33139552google scholar: lookup
                                    37. Amaya M, Broder CC. Vaccines to Emerging Viruses: Nipah and Hendra.. Annu Rev Virol 2020 Sep 29;7(1):447-473.
                                    38. Abdullahi AM, Sarmast ST, Singh R. Molecular Biology and Epidemiology of Neurotropic Viruses.. Cureus 2020 Aug 11;12(8):e9674.
                                      doi: 10.7759/cureus.9674pubmed: 32923269google scholar: lookup
                                    39. Goh GX, Tan K, Ang BSP, Wang LF, Tchoyoson Lim CC. Neuroimaging in Zoonotic Outbreaks Affecting the Central Nervous System: Are We Fighting the Last War?. AJNR Am J Neuroradiol 2020 Oct;41(10):1760-1767.
                                      doi: 10.3174/ajnr.A6727pubmed: 32819907google scholar: lookup
                                    40. Loomis RJ, Stewart-Jones GBE, Tsybovsky Y, Caringal RT, Morabito KM, McLellan JS, Chamberlain AL, Nugent ST, Hutchinson GB, Kueltzo LA, Mascola JR, Graham BS. Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development.. Front Immunol 2020;11:842.
                                      doi: 10.3389/fimmu.2020.00842pubmed: 32595632google scholar: lookup
                                    41. Gurley ES, Spiropoulou CF, de Wit E. Twenty Years of Nipah Virus Research: Where Do We Go From Here?. J Infect Dis 2020 May 11;221(Suppl 4):S359-S362.
                                      doi: 10.1093/infdis/jiaa078pubmed: 32392321google scholar: lookup
                                    42. Lee KH, Nikolay B, Sazzad HMS, Hossain MJ, Khan AKMD, Rahman M, Satter SM, Nichol ST, Klena JD, Pulliam JRC, Kilpatrick AM, Sultana S, Afroj S, Daszak P, Luby S, Cauchemez S, Salje H, Gurley ES. Changing Contact Patterns Over Disease Progression: Nipah Virus as a Case Study.. J Infect Dis 2020 Jul 6;222(3):438-442.
                                      doi: 10.1093/infdis/jiaa091pubmed: 32115627google scholar: lookup
                                    43. Prasad AN, Woolsey C, Geisbert JB, Agans KN, Borisevich V, Deer DJ, Mire CE, Cross RW, Fenton KA, Broder CC, Geisbert TW. Resistance of Cynomolgus Monkeys to Nipah and Hendra Virus Disease Is Associated With Cell-Mediated and Humoral Immunity.. J Infect Dis 2020 May 11;221(Suppl 4):S436-S447.
                                      doi: 10.1093/infdis/jiz613pubmed: 32022850google scholar: lookup
                                    44. Pryce R, Azarm K, Rissanen I, Harlos K, Bowden TA, Lee B. A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus.. Life Sci Alliance 2020 Jan;3(1).
                                      doi: 10.26508/lsa.201900578pubmed: 31862858google scholar: lookup
                                    45. Beena V, Saikumar G. Emerging horizon for bat borne viral zoonoses.. Virusdisease 2019 Sep;30(3):321-328.
                                      doi: 10.1007/s13337-019-00548-zpubmed: 31803797google scholar: lookup
                                    46. Satterfield BA, Borisevich V, Foster SL, Rodriguez SE, Cross RW, Fenton KA, Agans KN, Basler CF, Geisbert TW, Mire CE. Antagonism of STAT1 by Nipah virus P gene products modulates disease course but not lethal outcome in the ferret model.. Sci Rep 2019 Nov 13;9(1):16710.
                                      doi: 10.1038/s41598-019-53037-0pubmed: 31723221google scholar: lookup
                                    47. Mire CE, Chan YP, Borisevich V, Cross RW, Yan L, Agans KN, Dang HV, Veesler D, Fenton KA, Geisbert TW, Broder CC. A Cross-Reactive Humanized Monoclonal Antibody Targeting Fusion Glycoprotein Function Protects Ferrets Against Lethal Nipah Virus and Hendra Virus Infection.. J Infect Dis 2020 May 11;221(Suppl 4):S471-S479.
                                      doi: 10.1093/infdis/jiz515pubmed: 31686101google scholar: lookup
                                    48. Geisbert JB, Borisevich V, Prasad AN, Agans KN, Foster SL, Deer DJ, Cross RW, Mire CE, Geisbert TW, Fenton KA. An Intranasal Exposure Model of Lethal Nipah Virus Infection in African Green Monkeys.. J Infect Dis 2020 May 11;221(Suppl 4):S414-S418.
                                      doi: 10.1093/infdis/jiz391pubmed: 31665362google scholar: lookup
                                    49. Pelissier R, Iampietro M, Horvat B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches.. F1000Res 2019;8.
                                    50. Li K, Yan S, Wang N, He W, Guan H, He C, Wang Z, Lu M, He W, Ye R, Veit M, Su S. Emergence and adaptive evolution of Nipah virus.. Transbound Emerg Dis 2020 Jan;67(1):121-132.
                                      doi: 10.1111/tbed.13330pubmed: 31408582google scholar: lookup
                                    51. Griffin BD, Leung A, Chan M, Warner BM, Ranadheera C, Tierney K, Audet J, Frost KL, Safronetz D, Embury-Hyatt C, Booth SA, Kobasa D. Establishment of an RNA polymerase II-driven reverse genetics system for Nipah virus strains from Malaysia and Bangladesh.. Sci Rep 2019 Aug 1;9(1):11171.
                                      doi: 10.1038/s41598-019-47549-ypubmed: 31371748google scholar: lookup
                                    52. Khandia R, Singhal S, Kumar U, Ansari A, Tiwari R, Dhama K, Das J, Munjal A, Singh RK. Analysis of Nipah Virus Codon Usage and Adaptation to Hosts.. Front Microbiol 2019;10:886.
                                      doi: 10.3389/fmicb.2019.00886pubmed: 31156564google scholar: lookup
                                    53. Luby S, Arthur R. Risk and Response to Biological Catastrophe in Lower Income Countries.. Curr Top Microbiol Immunol 2019;424:85-105.
                                      doi: 10.1007/82_2019_162pubmed: 31127360google scholar: lookup
                                    54. Mire CE, Geisbert JB, Agans KN, Versteeg KM, Deer DJ, Satterfield BA, Fenton KA, Geisbert TW. Use of Single-Injection Recombinant Vesicular Stomatitis Virus Vaccine to Protect Nonhuman Primates Against Lethal Nipah Virus Disease.. Emerg Infect Dis 2019 Jun;25(6):1144-1152.
                                      doi: 10.3201/eid2506.181620pubmed: 31107231google scholar: lookup
                                    55. Nikolay B, Salje H, Hossain MJ, Khan AKMD, Sazzad HMS, Rahman M, Daszak P, Stru00f6her U, Pulliam JRC, Kilpatrick AM, Nichol ST, Klena JD, Sultana S, Afroj S, Luby SP, Cauchemez S, Gurley ES. Transmission of Nipah Virus - 14 Years of Investigations in Bangladesh.. N Engl J Med 2019 May 9;380(19):1804-1814.
                                      doi: 10.1056/NEJMoa1805376pubmed: 31067370google scholar: lookup
                                    56. Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system.. Pathog Dis 2019 Mar 1;77(2).
                                      doi: 10.1093/femspd/ftz023pubmed: 30985897google scholar: lookup
                                    57. Bradel-Tretheway BG, Zamora JLR, Stone JA, Liu Q, Li J, Aguilar HC. Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes.. J Virol 2019 Jul 1;93(13).
                                      doi: 10.1128/JVI.00577-19pubmed: 30971473google scholar: lookup
                                    58. Kasloff SB, Leung A, Pickering BS, Smith G, Moffat E, Collignon B, Embury-Hyatt C, Kobasa D, Weingartl HM. Pathogenicity of Nipah henipavirus Bangladesh in a swine host.. Sci Rep 2019 Mar 26;9(1):5230.
                                      doi: 10.1038/s41598-019-40476-ypubmed: 30914663google scholar: lookup
                                    59. Banerjee S, Gupta N, Kodan P, Mittal A, Ray Y, Nischal N, Soneja M, Biswas A, Wig N. Nipah virus disease: A rare and intractable disease.. Intractable Rare Dis Res 2019 Feb;8(1):1-8.
                                      doi: 10.5582/irdr.2018.01130pubmed: 30881850google scholar: lookup
                                    60. Aditi, Shariff M. Nipah virus infection: A review.. Epidemiol Infect 2019 Jan;147:e95.
                                      doi: 10.1017/S0950268819000086pubmed: 30869046google scholar: lookup
                                    61. Mazzola LT, Kelly-Cirino C. Diagnostics for Nipah virus: a zoonotic pathogen endemic to Southeast Asia.. BMJ Glob Health 2019;4(Suppl 2):e001118.
                                      doi: 10.1136/bmjgh-2018-001118pubmed: 30815286google scholar: lookup
                                    62. Chakraborty S, Deb B, Barbhuiya PA, Uddin A. Analysis of codon usage patterns and influencing factors in Nipah virus.. Virus Res 2019 Apr 2;263:129-138.
                                    63. Hoffmann M, Nehlmeier I, Brinkmann C, Kru00e4hling V, Behner L, Moldenhauer AS, Kru00fcger N, Nehls J, Schindler M, Hoenen T, Maisner A, Becker S, Pu00f6hlmann S. Tetherin Inhibits Nipah Virus but Not Ebola Virus Replication in Fruit Bat Cells.. J Virol 2019 Feb 1;93(3).
                                      doi: 10.1128/JVI.01821-18pubmed: 30429347google scholar: lookup
                                    64. Ramphul K, Mejias SG, Agumadu VC, Sombans S, Sonaye R, Lohana P. The Killer Virus Called Nipah: A Review.. Cureus 2018 Aug 21;10(8):e3168.
                                      doi: 10.7759/cureus.3168pubmed: 30416895google scholar: lookup
                                    65. Yu J, Lv X, Yang Z, Gao S, Li C, Cai Y, Li J. The Main Risk Factors of Nipah Disease and Its Risk Analysis in China.. Viruses 2018 Oct 19;10(10).
                                      doi: 10.3390/v10100572pubmed: 30347642google scholar: lookup
                                    66. Sun B, Jia L, Liang B, Chen Q, Liu D. Phylogeography, Transmission, and Viral Proteins of Nipah Virus.. Virol Sin 2018 Oct;33(5):385-393.
                                      doi: 10.1007/s12250-018-0050-1pubmed: 30311101google scholar: lookup
                                    67. Deka MA, Morshed N. Mapping Disease Transmission Risk of Nipah Virus in South and Southeast Asia.. Trop Med Infect Dis 2018 May 30;3(2).
                                      doi: 10.3390/tropicalmed3020057pubmed: 30274453google scholar: lookup
                                    68. Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review.. Rev Med Virol 2019 Jan;29(1):e2010.
                                      doi: 10.1002/rmv.2010pubmed: 30251294google scholar: lookup
                                    69. Kessler MK, Becker DJ, Peel AJ, Justice NV, Lunn T, Crowley DE, Jones DN, Eby P, Su00e1nchez CA, Plowright RK. Changing resource landscapes and spillover of henipaviruses.. Ann N Y Acad Sci 2018 Oct;1429(1):78-99.
                                      doi: 10.1111/nyas.13910pubmed: 30138535google scholar: lookup
                                    70. Ajith Kumar AK, Anoop Kumar AS. Deadly Nipah Outbreak in Kerala: Lessons Learned for the Future.. Indian J Crit Care Med 2018 Jul;22(7):475-476.
                                      doi: 10.4103/ijccm.IJCCM_282_18pubmed: 30111920google scholar: lookup
                                    71. Jensen KS, Adams R, Bennett RS, Bernbaum J, Jahrling PB, Holbrook MR. Development of a novel real-time polymerase chain reaction assay for the quantitative detection of Nipah virus replicative viral RNA.. PLoS One 2018;13(6):e0199534.
                                      doi: 10.1371/journal.pone.0199534pubmed: 29920552google scholar: lookup
                                    72. Donaldson H, Lucey D. Enhancing preparation for large Nipah outbreaks beyond Bangladesh: Preventing a tragedy like Ebola in West Africa.. Int J Infect Dis 2018 Jul;72:69-72.
                                      doi: 10.1016/j.ijid.2018.05.015pubmed: 29879523google scholar: lookup
                                    73. Uchida S, Horie R, Sato H, Kai C, Yoneda M. Possible role of the Nipah virus V protein in the regulation of the interferon beta induction by interacting with UBX domain-containing protein1.. Sci Rep 2018 May 16;8(1):7682.
                                      doi: 10.1038/s41598-018-25815-9pubmed: 29769705google scholar: lookup
                                    74. Dawes BE, Kalveram B, Ikegami T, Juelich T, Smith JK, Zhang L, Park A, Lee B, Komeno T, Furuta Y, Freiberg AN. Favipiravir (T-705) protects against Nipah virus infection in the hamster model.. Sci Rep 2018 May 15;8(1):7604.
                                      doi: 10.1038/s41598-018-25780-3pubmed: 29765101google scholar: lookup
                                    75. Ang BSP, Lim TCC, Wang L. Nipah Virus Infection.. J Clin Microbiol 2018 Jun;56(6).
                                      doi: 10.1128/JCM.01875-17pubmed: 29643201google scholar: lookup
                                    76. Guillaume-Vasselin V, Lemaitre L, Dhondt KP, Tedeschi L, Poulard A, Charreyre C, Horvat B. Protection from Hendra virus infection with Canarypox recombinant vaccine.. NPJ Vaccines 2016;1:16003.
                                      doi: 10.1038/npjvaccines.2016.3pubmed: 29263849google scholar: lookup
                                    77. Weatherman S, Feldmann H, de Wit E. Transmission of henipaviruses.. Curr Opin Virol 2018 Feb;28:7-11.
                                      doi: 10.1016/j.coviro.2017.09.004pubmed: 29035743google scholar: lookup
                                    78. Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns.. Adv Virus Res 2017;98:1-55.
                                      doi: 10.1016/bs.aivir.2016.12.001pubmed: 28433050google scholar: lookup
                                    79. Aguilar HC, Henderson BA, Zamora JL, Johnston GP. Paramyxovirus Glycoproteins and the Membrane Fusion Process.. Curr Clin Microbiol Rep 2016 Sep;3(3):142-154.
                                      doi: 10.1007/s40588-016-0040-8pubmed: 28138419google scholar: lookup
                                    80. Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ, Foss DL, Mwangi D, Broder CC, Roth JA, Weingartl HM. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response.. Vaccine 2016 Sep 14;34(40):4777-86.
                                      doi: 10.1016/j.vaccine.2016.08.028pubmed: 27544586google scholar: lookup
                                    81. Mire CE, Satterfield BA, Geisbert JB, Agans KN, Borisevich V, Yan L, Chan YP, Cross RW, Fenton KA, Broder CC, Geisbert TW. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy.. Sci Rep 2016 Aug 3;6:30916.
                                      doi: 10.1038/srep30916pubmed: 27484128google scholar: lookup
                                    82. Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines.. FEBS Lett 2016 Aug;590(15):2494-511.
                                      doi: 10.1002/1873-3468.12272pubmed: 27350027google scholar: lookup
                                    83. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA. The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets.. PLoS Negl Trop Dis 2016 Jun;10(6):e0004775.
                                      doi: 10.1371/journal.pntd.0004775pubmed: 27341030google scholar: lookup
                                    84. Broder CC, Weir DL, Reid PA. Hendra virus and Nipah virus animal vaccines.. Vaccine 2016 Jun 24;34(30):3525-34.
                                      doi: 10.1016/j.vaccine.2016.03.075pubmed: 27154393google scholar: lookup
                                    85. Satterfield BA, Cross RW, Fenton KA, Borisevich V, Agans KN, Deer DJ, Graber J, Basler CF, Geisbert TW, Mire CE. Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets.. J Virol 2016 Jul 15;90(14):6326-6343.
                                      doi: 10.1128/JVI.00215-16pubmed: 27147733google scholar: lookup
                                    86. Wacharapluesadee S, Samseeneam P, Phermpool M, Kaewpom T, Rodpan A, Maneeorn P, Srongmongkol P, Kanchanasaka B, Hemachudha T. Molecular characterization of Nipah virus from Pteropus hypomelanus in Southern Thailand.. Virol J 2016 Mar 25;13:53.
                                      doi: 10.1186/s12985-016-0510-xpubmed: 27016237google scholar: lookup
                                    87. Rodhain F. [Bats and Viruses: complex relationships].. Bull Soc Pathol Exot 2015 Oct;108(4):272-89.
                                      doi: 10.1007/s13149-015-0448-zpubmed: 26330152google scholar: lookup
                                    88. Ong KC, Wong KT. Henipavirus Encephalitis: Recent Developments and Advances.. Brain Pathol 2015 Sep;25(5):605-13.
                                      doi: 10.1111/bpa.12278pubmed: 26276024google scholar: lookup
                                    89. Satterfield BA, Cross RW, Fenton KA, Agans KN, Basler CF, Geisbert TW, Mire CE. The immunomodulating V and W proteins of Nipah virus determine disease course.. Nat Commun 2015 Jun 24;6:7483.
                                      doi: 10.1038/ncomms8483pubmed: 26105519google scholar: lookup