Marine drugs2017; 15(8); 237; doi: 10.3390/md15080237

Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses.

Abstract: Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.
Publication Date: 2017-08-03 PubMed ID: 28771165PubMed Central: PMC5577592DOI: 10.3390/md15080237Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article


This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research investigates the role of Spirulina platensis, a type of algae, in improving mitochondrial function and enhancing insulin sensitivity in horses suffering from Equine Metabolic Syndrome (EMS), a serious endocrine disorder. The study finds that the algae reduces oxidative stress and inflammation in two types of cells — adipose-derived mesenchymal stromal cells and intestinal epithelial cells — and successfully improved the health and insulin sensitivity of EMS-affected horses.

Research Background

  • Equine Metabolic Syndrome (EMS) is a critical endocrine disorder present in horses leading to insulin resistance, oxidative stress, and systemic inflammation.
  • Adipose-derived mesenchymal stromal cells (ASCs) and intestinal epithelial cells (IECs) are significantly impacted by the disorder, leading to impaired function and morphology.
  • Spirulina platensis, a cyanobacterium that has health-promoting properties, was investigated for its role in mitigating the effects of EMS.

Research Methods and Findings

  • The research conducted both in vitro and in vivo studies to investigate the effects of Spirulina platensis supplementation.
  • In the lab, it was found that the cyanobacterium reduces cellular oxidative stress and inflammation, thus improving the morphology and function of ASCs and IECs. This restoration was visible in enhanced viability, suppressed senescence, and improved proliferation of these cells.
  • Spirulina extract also exhibited protective effects on mitochondrial dysfunction and degeneration — a cellular implication of EMS.
  • Further, it was found that the extract could suppress LPS-induced inflammatory responses in macrophages, critical cells involved in innate immune response.
  • The in vivo studies involved EMS-affected horses, whose diet was supplemented with Spirulina extract. Over time, weight loss was observed in these horses, and their insulin sensitivity improved, indicating effective mitigation of the syndrome’s effects.

Conclusion and Implications

  • This research points out that Spirulina platensis can potentially be used as a supplemental treatment in managing equine metabolic syndrome. Its anti-inflammatory and antioxidant properties make it beneficial for restoring cellular health.
  • However, the study also stresses the need for more extensive research and investigation into the long-term use and potential side effects of Spirulina platensis supplementation before it can become an established form of treatment.

Cite This Article

Nawrocka D, Kornicka K, u015amieszek A, Marycz K. (2017). Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses. Mar Drugs, 15(8), 237.


ISSN: 1660-3397
NlmUniqueID: 101213729
Country: Switzerland
Language: English
Volume: 15
Issue: 8
PII: 237

Researcher Affiliations

Nawrocka, Daria
  • Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 27b Norwida Str., 50-375 Wroclaw, Poland.
Kornicka, Katarzyna
  • Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 27b Norwida Str., 50-375 Wroclaw, Poland.
  • Wroclaw Research Centre EIT+, Stablowicka Str. 147, 54-066 Wroclaw, Poland.
u015amieszek, Agnieszka
  • Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 27b Norwida Str., 50-375 Wroclaw, Poland.
Marycz, Krzysztof
  • Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 27b Norwida Str., 50-375 Wroclaw, Poland.
  • Wroclaw Research Centre EIT+, Stablowicka Str. 147, 54-066 Wroclaw, Poland.

MeSH Terms

  • Adipose Tissue / metabolism
  • Animals
  • Epithelial Cells / metabolism
  • Horses
  • Insulin Resistance
  • Intestinal Mucosa / metabolism
  • Intestines / cytology
  • Mesenchymal Stem Cells / metabolism
  • Metabolic Syndrome / metabolism
  • Mitochondria / drug effects
  • Mitochondria / metabolism
  • Obesity / metabolism
  • Oxidative Stress / drug effects
  • Spirulina / metabolism

Conflict of Interest Statement

The authors declare no conflict of interest.


This article includes 78 references
  1. Frank N. Equine metabolic syndrome.. Vet Clin North Am Equine Pract 2011 Apr;27(1):73-92.
    doi: 10.1016/j.cveq.2010.12.004pubmed: 21392655google scholar: lookup
  2. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome.. Mediators Inflamm 2010;2010.
    doi: 10.1155/2010/289645pmc: PMC2913796pubmed: 20706689google scholar: lookup
  3. Marycz K, Kornicka K, Basinska K, Czyrek A. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging.. Oxid Med Cell Longev 2016;2016:4710326.
    doi: 10.1155/2016/4710326pmc: PMC4670679pubmed: 26682006google scholar: lookup
  4. Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress.. Front Cell Neurosci 2014;8:213.
    doi: 10.3389/fncel.2014.00213pmc: PMC4114208pubmed: 25120434google scholar: lookup
  5. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease.. Antioxid Redox Signal 2014 Jul 20;21(3):396-413.
    doi: 10.1089/ars.2014.5851pmc: PMC4076992pubmed: 24702237google scholar: lookup
  6. Ding S, Lund PK. Role of intestinal inflammation as an early event in obesity and insulin resistance.. Curr Opin Clin Nutr Metab Care 2011 Jul;14(4):328-33.
  7. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway.. PLoS One 2012;7(10):e47713.
  8. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis.. Nat Rev Immunol 2014 Mar;14(3):141-53.
    doi: 10.1038/nri3608pubmed: 24566914google scholar: lookup
  9. Huang CJ, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO. Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation.. Sports Med Open 2015;1(1):32.
    doi: 10.1186/s40798-015-0031-ypmc: PMC4580715pubmed: 26435910google scholar: lookup
  10. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence.. Aging Cell 2010 Oct;9(5):667-84.
  11. Al-Dhabi NA, Valan Arasu M. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities.. Evid Based Complement Alternat Med 2016;2016:7631864.
    doi: 10.1155/2016/7631864pmc: PMC4737012pubmed: 26933442google scholar: lookup
  12. Deng R, Chow TJ. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina.. Cardiovasc Ther 2010 Aug;28(4):e33-45.
  13. Pak W, Takayama F, Mine M, Nakamoto K, Kodo Y, Mankura M, Egashira T, Kawasaki H, Mori A. Anti-oxidative and anti-inflammatory effects of spirulina on rat model of non-alcoholic steatohepatitis.. J Clin Biochem Nutr 2012 Nov;51(3):227-34.
    doi: 10.3164/jcbn.12-18pmc: PMC3491249pubmed: 23170052google scholar: lookup
  14. Wu Q, Liu L, Miron A, Klu00edmovu00e1 B, Wan D, Kuu010da K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview.. Arch Toxicol 2016 Aug;90(8):1817-40.
    doi: 10.1007/s00204-016-1744-5pubmed: 27259333google scholar: lookup
  15. FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues.. J Biol Chem 1957 May;226(1):497-509.
    pubmed: 13428781
  16. Davidson I. Hydrolysis of samples for amino acid analysis.. Methods Mol Biol 1997;64:119-29.
    pubmed: 9116815doi: 10.1385/0-89603-353-8:119google scholar: lookup
  17. Moraes C.C., Sala L., Cerveira G.P., Kalil S.J. C-phycocyanin extraction from Spirulina platensis wet biomass. Braz. J. Chem. Eng. 2011;28:45u201349. doi: 10.1590/S0104-66322011000100006.
  18. Horvu00e1th H., Kovu00e1cs A.W., Riddick C., Pru00e9sing M. Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. Eur. J. Phycol. 2013;48:278u2013286. doi: 10.1080/09670262.2013.821525.
  19. Keller T., Shewager H. Air pollution and ascorbic acid. Eur. J. For. Pathol. 1997;7:338u2013350. doi: 10.1111/j.1439-0329.1977.tb00603.x.
  20. Basinska K, Marycz K, u015aieszek A, Nicpou0144 J. The production and distribution of IL-6 and TNF-a in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome.. J Vet Sci 2015;16(1):113-20.
    doi: 10.4142/jvs.2015.16.1.113pmc: PMC4367141pubmed: 25269712google scholar: lookup
  21. Grzesiak J, Krzysztof M, Karol W, Joanna C. Isolation and morphological characterisation of ovine adipose-derived mesenchymal stem cells in culture.. Int J Stem Cells 2011 Nov;4(2):99-104.
    doi: 10.15283/ijsc.2011.4.2.99pmc: PMC3840966pubmed: 24298341google scholar: lookup
  22. Marycz K, u015amieszek A, Grzesiak J, Donesz-Sikorska A, Krzak-Rou015b J. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid.. Biomed Mater 2013 Dec;8(6):065004.
    doi: 10.1088/1748-6041/8/6/065004pubmed: 24280658google scholar: lookup
  23. Maru0119dziak M, Marycz K, Tomaszewski KA, Kornicka K, Henry BM. The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells.. Stem Cells Int 2016;2016:2152435.
    doi: 10.1155/2016/2152435pmc: PMC4749808pubmed: 26941800google scholar: lookup
  24. Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells.. J Vis Exp 2010 Jan 28;(35).
    doi: 10.3791/1488pmc: PMC3152216pubmed: 20110936google scholar: lookup
  25. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.. Anal Biochem 1987 Apr;162(1):156-9.
    doi: 10.1016/0003-2697(87)90021-2pubmed: 2440339google scholar: lookup
  26. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.. Cytotherapy 2006;8(4):315-7.
    doi: 10.1080/14653240600855905pubmed: 16923606google scholar: lookup
  27. Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges.. Histol Histopathol 2013 Sep;28(9):1109-16.
    pmc: PMC3839663pubmed: 23588700doi: 10.14670/HH-28.1109google scholar: lookup
  28. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence.. Genes Dev 2010 Nov 15;24(22):2463-79.
    doi: 10.1101/gad.1971610pmc: PMC2975923pubmed: 21078816google scholar: lookup
  29. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells.. Nat Rev Mol Cell Biol 2007 Sep;8(9):729-40.
    doi: 10.1038/nrm2233pubmed: 17667954google scholar: lookup
  30. Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death.. Apoptosis 2007 May;12(5):835-40.
    doi: 10.1007/s10495-006-0525-7pubmed: 17136322google scholar: lookup
  31. de Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A. Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases.. Hum Mol Genet 2012 Apr 15;21(8):1770-81.
    doi: 10.1093/hmg/ddr610pmc: PMC3313794pubmed: 22215441google scholar: lookup
  32. Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages.. Curr Protoc Immunol 2008 Nov;Chapter 14:14.1.1-14.1.14.
  33. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages.. Nat Immunol 2013 Oct;14(10):986-95.
    doi: 10.1038/ni.2705pmc: PMC4045180pubmed: 24048120google scholar: lookup
  34. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation.. Nat Rev Immunol 2008 Dec;8(12):958-69.
    doi: 10.1038/nri2448pmc: PMC2724991pubmed: 19029990google scholar: lookup
  35. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease.. Int J Mol Sci 2014 Apr 11;15(4):6184-223.
    doi: 10.3390/ijms15046184pmc: PMC4013623pubmed: 24733068google scholar: lookup
  36. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome.. J Clin Invest 2004 Dec;114(12):1752-61.
    doi: 10.1172/JCI21625pmc: PMC535065pubmed: 15599400google scholar: lookup
  37. Xie F, Sun S, Xu A, Zheng S, Xue M, Wu P, Zeng JH, Bai L. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway.. Cell Death Dis 2014 Jan 16;5(1):e1006.
    doi: 10.1038/cddis.2013.542pmc: PMC4040683pubmed: 24434514google scholar: lookup
  38. Belay A., Ota Y., Miyakawa K., Shimamatsu H. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 1993;5:235u2013241. doi: 10.1007/BF00004024.
    doi: 10.1007/BF00004024google scholar: lookup
  39. Ramadan M.F., Asker M.M.S., Ibrahim Z.K. Functional bioactive compounds and biological activities of Spirulina platensis lipids. Czech J. Food Sci. 2008;26:211u2013222.
  40. Sanberg C.D., Bickford P.C., Sanberg P.R., Tan J., Shytle R.D. Compounds for Stimulating Stem Cell Proliferation Including Spirulina. 20,080,085,330 A1. [(accessed on 4 January 2017)];U.S. Patent. 2008 Apr 10; Available online:
  41. Deo S.K., Pandey R., Jha S.K., Singh J., Sodhi K.S. Spirulina: The single cell protein. IAJP. 2014;4:2211u20132217.
  42. Chu WL, Lim YW, Radhakrishnan AK, Lim PE. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals.. BMC Complement Altern Med 2010 Sep 21;10:53.
    doi: 10.1186/1472-6882-10-53pmc: PMC2954939pubmed: 20858231google scholar: lookup
  43. Li XL, Xu G, Chen T, Wong YS, Zhao HL, Fan RR, Gu XM, Tong PC, Chan JC. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways.. Int J Biochem Cell Biol 2009 Jul;41(7):1526-35.
    doi: 10.1016/j.biocel.2009.01.002pubmed: 19166964google scholar: lookup
  44. Ismail MF, Ali DA, Fernando A, Abdraboh ME, Gaur RL, Ibrahim WM, Raj MH, Ouhtit A. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina.. Int J Biol Sci 2009 Jun 2;5(4):377-87.
    doi: 10.7150/ijbs.5.377pmc: PMC2695150pubmed: 19521547google scholar: lookup
  45. Gu Z, Jiang J, Tan W, Xia Y, Cao H, Meng Y, Da Z, Liu H, Cheng C. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients.. Clin Dev Immunol 2013;2013:134243.
    doi: 10.1155/2013/134243pmc: PMC3787636pubmed: 24151513google scholar: lookup
  46. Armesilla-Diaz A, Elvira G, Silva A. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells.. Exp Cell Res 2009 Dec 10;315(20):3598-610.
    doi: 10.1016/j.yexcr.2009.08.004pubmed: 19686735google scholar: lookup
  47. Kamble S.P., Gaikar R.B., Padalia R.B., Shinde K.D. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. J. Appl. Pharm. Sci. 2013;3:149u2013153.
  48. Linjawi S.A. Protective effect of Spirulina against mitomycin C-Induced genotoxic damage in male rats. J. Am. Sci. 2011;7:922u2013931.
  49. Ju00fcrgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria.. Proc Natl Acad Sci U S A 1998 Apr 28;95(9):4997-5002.
    doi: 10.1073/pnas.95.9.4997pmc: PMC20202pubmed: 9560217google scholar: lookup
  50. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL.. J Biol Chem 1999 Jan 22;274(4):2225-33.
    doi: 10.1074/jbc.274.4.2225pubmed: 9890985google scholar: lookup
  51. Narendra D, Walker JE, Youle R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism.. Cold Spring Harb Perspect Biol 2012 Nov 1;4(11).
    doi: 10.1101/cshperspect.a011338pmc: PMC3536340pubmed: 23125018google scholar: lookup
  52. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance.. J Cell Sci 2012 Feb 15;125(Pt 4):795-9.
    doi: 10.1242/jcs.093849pmc: PMC3656616pubmed: 22448035google scholar: lookup
  53. Wu W, Xu H, Wang Z, Mao Y, Yuan L, Luo W, Cui Z, Cui T, Wang XL, Shen YH. PINK1-Parkin-Mediated Mitophagy Protects Mitochondrial Integrity and Prevents Metabolic Stress-Induced Endothelial Injury.. PLoS One 2015;10(7):e0132499.
  54. Lee SH, Du J, Stitham J, Atteya G, Lee S, Xiang Y, Wang D, Jin Y, Leslie KL, Spollett G, Srivastava A, Mannam P, Ostriker A, Martin KA, Tang WH, Hwa J. Inducing mitophagy in diabetic platelets protects against severe oxidative stress.. EMBO Mol Med 2016 Jul;8(7):779-95.
    doi: 10.15252/emmm.201506046pmc: PMC4931291pubmed: 27221050google scholar: lookup
  55. Marycz K, Kornicka K, Grzesiak J, u015amieszek A, Szu0142apka J. Macroautophagy and Selective Mitophagy Ameliorate Chondrogenic Differentiation Potential in Adipose Stem Cells of Equine Metabolic Syndrome: New Findings in the Field of Progenitor Cells Differentiation.. Oxid Med Cell Longev 2016;2016:3718468.
    doi: 10.1155/2016/3718468pmc: PMC5178365pubmed: 28053691google scholar: lookup
  56. Marycz K, Kornicka K, Maru0119dziak M, Golonka P, Nicpou0144 J. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy.. J Cell Mol Med 2016 Dec;20(12):2384-2404.
    doi: 10.1111/jcmm.12932pmc: PMC5134411pubmed: 27629697google scholar: lookup
  57. Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.. Life Sci 2016 Mar 1;148:183-93.
    doi: 10.1016/j.lfs.2016.02.002pubmed: 26851532google scholar: lookup
  58. Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome.. Life Sci 2009 May 22;84(21-22):705-12.
    doi: 10.1016/j.lfs.2009.02.026pubmed: 19281826google scholar: lookup
  59. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options.. Curr Neuropharmacol 2009 Mar;7(1):65-74.
    doi: 10.2174/157015909787602823pmc: PMC2724665pubmed: 19721819google scholar: lookup
  60. Turrens JF. Mitochondrial formation of reactive oxygen species.. J Physiol 2003 Oct 15;552(Pt 2):335-44.
  61. Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain.. PLoS Comput Biol 2011 Mar;7(3):e1001115.
  62. Liu B, Chen Y, St Clair DK. ROS and p53: a versatile partnership.. Free Radic Biol Med 2008 Apr 15;44(8):1529-35.
  63. Wu LM, Guo R, Hui L, Ye YG, Xiang JM, Wan CY, Zou M, Ma R, Sun XZ, Yang SJ, Guo DZ. Stanniocalcin-1 protects bovine intestinal epithelial cells from oxidative stress-induced damage.. J Vet Sci 2014 Dec;15(4):475-83.
    doi: 10.4142/jvs.2014.15.4.475pmc: PMC4269589pubmed: 24962416google scholar: lookup
  64. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer.. Biochem J 1996 Jan 1;313 ( Pt 1)(Pt 1):17-29.
    doi: 10.1042/bj3130017pmc: PMC1216878pubmed: 8546679google scholar: lookup
  65. Datta K, Suman S, Kallakury BV, Fornace AJ Jr. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine.. PLoS One 2012;7(8):e42224.
  66. Denu RA, Hematti P. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology.. Oxid Med Cell Longev 2016;2016:2989076.
    doi: 10.1155/2016/2989076pmc: PMC4928004pubmed: 27413419google scholar: lookup
  67. Santoyo S., Herrero M., Senorans F.J., Cifuentes A., Ibu00e1u00f1ez E., Jaime L. Functional characterization of pressurized liquid extracts of Spirulina platensis. Eur. Food Res. Technol. 2006;224:75u201381. doi: 10.1007/s00217-006-0291-3.
    doi: 10.1007/s00217-006-0291-3google scholar: lookup
  68. Dartsch PC. Antioxidant potential of selected Spirulina platensis preparations.. Phytother Res 2008 May;22(5):627-33.
    doi: 10.1002/ptr.2310pubmed: 18398928google scholar: lookup
  69. Romay C, Armesto J, Remirez D, Gonzu00e1lez R, Ledon N, Garcu00eda I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae.. Inflamm Res 1998 Jan;47(1):36-41.
    doi: 10.1007/s000110050256pubmed: 9495584google scholar: lookup
  70. Romay C, Ledu00f3n N, Gonzu00e1lez R. Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation.. Inflamm Res 1998 Aug;47(8):334-8.
    doi: 10.1007/s000110050338pubmed: 9754867google scholar: lookup
  71. Esposito K, Giugliano D. The metabolic syndrome and inflammation: association or causation?. Nutr Metab Cardiovasc Dis 2004 Oct;14(5):228-32.
    doi: 10.1016/S0939-4753(04)80048-6pubmed: 15673055google scholar: lookup
  72. Joventino IP, Alves HG, Neves LC, Pinheiro-Joventino F, Leal LK, Neves SA, Ferreira FV, Brito GA, Viana GB. The microalga Spirulina platensis presents anti-inflammatory action as well as hypoglycemic and hypolipidemic properties in diabetic rats.. J Complement Integr Med 2012 Aug 10;9:Article 17.
    doi: 10.1515/1553-3840.1534pubmed: 22944720google scholar: lookup
  73. Pham TX, Park YK, Lee JY. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases.. Nutrients 2016 Jun 21;8(6).
    doi: 10.3390/nu8060381pmc: PMC4924221pubmed: 27338466google scholar: lookup
  74. Pham T.X., Lee J.-Y. The anti-inflammatory effects of Spirulina platensis extract are mediated, in part, through the induction of an endotoxin tolerance-like mechanism. FASEB J. 2016;30(Suppl. 916.15)
  75. Quader S.H., Islam S.U., Saifullah A., Majumder F.U., Hannan J. In-vivo studies of the anti-inflammatory effects of Spirulina platensis. Pharma Innov. 2013;2:70u201380.
  76. Abdel-Daim MM, Farouk SM, Madkour FF, Azab SS. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis.. Immunopharmacol Immunotoxicol 2015 Apr;37(2):126-39.
    doi: 10.3109/08923973.2014.998368pubmed: 25567297google scholar: lookup
  77. Kumar N, Singh S, Patro N, Patro I. Evaluation of protective efficacy of Spirulina platensis against collagen-induced arthritis in rats.. Inflammopharmacology 2009 Jun;17(3):181-90.
    doi: 10.1007/s10787-009-0004-1pubmed: 19390977google scholar: lookup
  78. Parikh P, Mani U, Iyer U. Role of Spirulina in the Control of Glycemia and Lipidemia in Type 2 Diabetes Mellitus.. J Med Food 2001 Winter;4(4):193-199.
    doi: 10.1089/10966200152744463pubmed: 12639401google scholar: lookup


This article has been cited 28 times.