Animals : an open access journal from MDPI2021; 11(7); 1975; doi: 10.3390/ani11071975

A Standard Scale to Measure Equine Keeper Status and the Effect of Metabolic Tendency on Gut Microbiome Structure.

Abstract: Thriftiness in horses has been associated with more efficient nutrient harvesting in digestion, absorption and/or utilization, but the relative contribution of the gut microbiome to host metabolic tendency is not well understood. Recognizing the unreliability of owner reported assignment of keeper status, this research describes a novel tool for calculating whether a horse is an easy (EK) or hard (HK) keeper and then characterizes microbiome differences in these groups. The Equine Keeper Status Scale (EKSS) was developed and validated based on data gathered from 240 horses. Estimates of dietary energy intakes and requirements to achieve the optimal BCS score of 5 were used in EKSS assignments. Sixty percent of owners' characterizations disagreed with EKSS identified keeper assignments. Equine fecal 16S rRNA profiles ( = 73) revealed differences in α and β diversities and taxa abundances based on EKSS assignments. EK communities had more Planctomycetes and fewer Euryarcheaota, Spirochaetes and Proteobacteria than HK indicating functional differences in nutrient harvesting between groups. Differences in the gut microbiomes of horses based on keeper assignment point to host/microbial interactions that may underlie some differences in metabolic tendency. The EKSS enables robust, repeatable determination of keeper status which can be used by researchers and horse owners.
Publication Date: 2021-07-01 PubMed ID: 34359102PubMed Central: PMC8300108DOI: 10.3390/ani11071975Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research study develops and validates a new scientific tool called the “Equine Keeper Status Scale” (EKSS) to better determine whether a horse is an “easy keeper” (EK) or a “hard keeper” (HK), pertaining to how they metabolize food. The study also explores the differences in gut bacteria in horses based on this keeper status, providing insights into possible interactions between the host and their microbiome that affect metabolic tendencies.

Development and Validation of Equine Keeper Status Scale (EKSS)

  • The EKSS is a novel scientific tool developed to overcome the inaccuracies in owner-reported assignment of horses as either “easy keepers” (EK) or “hard keepers” (HK). The difference between the two lies in how efficiently a horse can harvest nutrients from digestion, absorption and utilization of food. EK horses typically have better nutrient harvesting abilities.
  • The scale was validated through an exhaustive process involving data collected from 240 horses.
  • It estimates the energy intake a horse requires to achieve an optimal Body Condition Score (BCS) of 5. These estimates are then used to assign a horse to an EKSS category.
  • Interestingly, the research found that owner reported assignments often contradicted EKSS results, with a 60% discord rate. This demonstrates the need for a standardized, scientific approach to determining keeper status like the EKSS.

Impact of Keeper Status on Gut Microbiome

  • The study also looked into the differences in gut microbiome structure between EK and HK horses, using equine fecal 16S rRNA profiles.
  • A total of 73 different bacterial profiles were examined for diversity and taxa abundance. The microbial communities of EK horses were found to have more Planctomycetes, a type of bacteria, but fewer Euryarchaeota, Spirochaetes, and Proteobacteria than HK horses.
  • The differences in bacterial composition suggest distinct functional abilities of nutrient harvesting between EK and HK horses, hinting at host-microbial interactions that may underpin some disparities in metabolic tendencies.

Implications and Applications

  • The research proves valuable by providing a robust and repeatable method to determine keeper status in horses, which can be utilized both by scientific researchers and horse owners.
  • It further expands the understanding of the relationship between metabolic tendencies and the gut microbiome configuration in horses, establishing a basis for future investigation in this area to improve horse nutrition and care.

Cite This Article

APA
Johnson ACB, Biddle AS. (2021). A Standard Scale to Measure Equine Keeper Status and the Effect of Metabolic Tendency on Gut Microbiome Structure. Animals (Basel), 11(7), 1975. https://doi.org/10.3390/ani11071975

Publication

ISSN: 2076-2615
NlmUniqueID: 101635614
Country: Switzerland
Language: English
Volume: 11
Issue: 7
PII: 1975

Researcher Affiliations

Johnson, Alexa C B
  • Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
Biddle, Amy S
  • Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 81 references
  1. Robin CA, Ireland JL, Wylie CE, Collins SN, Verheyen KL, Newton JR. Prevalence of and risk factors for equine obesity in Great Britain based on owner-reported body condition scores.. Equine Vet J 2015 Mar;47(2):196-201.
    doi: 10.1111/evj.12275pubmed: 24735219google scholar: lookup
  2. Henneke DR, Potter GD, Kreider JL, Yeates BF. Relationship between condition score, physical measurements and body fat percentage in mares.. Equine Vet J 1983 Oct;15(4):371-2.
  3. Bu00e4ckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage.. Proc Natl Acad Sci U S A 2004 Nov 2;101(44):15718-23.
    doi: 10.1073/pnas.0407076101pmc: PMC524219pubmed: 15505215google scholar: lookup
  4. Villodre Tudela C, Boudry C, Stumpff F, Aschenbach JR, Vahjen W, Zentek J, Pieper R. Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling.. Br J Nutr 2015 Feb 28;113(4):610-7.
    doi: 10.1017/S0007114514004231pubmed: 25656974google scholar: lookup
  5. McGowan TW, Pinchbeck G, Phillips CJ, Perkins N, Hodgson DR, McGowan CM. A survey of aged horses in Queensland, Australia. Part 2: Clinical signs and owners' perceptions of health and welfare.. Aust Vet J 2010 Dec;88(12):465-71.
  6. Yngvesson J, Rey Torres JC, Lindholm J, Pu00e4ttiniemi A, Andersson P, Sassner H. Health and Body Conditions of Riding School Horses Housed in Groups or Kept in Conventional Tie-Stall/Box Housing.. Animals (Basel) 2019 Feb 26;9(3).
    doi: 10.3390/ani9030073pmc: PMC6466050pubmed: 30813613google scholar: lookup
  7. German AJ. The growing problem of obesity in dogs and cats.. J Nutr 2006 Jul;136(7 Suppl):1940S-1946S.
    doi: 10.1093/jn/136.7.1940Spubmed: 16772464google scholar: lookup
  8. Kienzle E, Bergler R, Mandernach A. A comparison of the feeding behavior and the human-animal relationship in owners of normal and obese dogs.. J Nutr 1998 Dec;128(12 Suppl):2779S-2782S.
    doi: 10.1093/jn/128.12.2779Spubmed: 9868265google scholar: lookup
  9. Argo CM, Curtis GC, Grove-White D, Dugdale AH, Barfoot CF, Harris PA. Weight loss resistance: a further consideration for the nutritional management of obese Equidae.. Vet J 2012 Nov;194(2):179-88.
    doi: 10.1016/j.tvjl.2012.09.020pubmed: 23117030google scholar: lookup
  10. Morrison PK, Newbold CJ, Jones E, Worgan HJ, Grove-White DH, Dugdale AH, Barfoot C, Harris PA, Argo CM. The equine gastrointestinal microbiome: impacts of weight-loss.. BMC Vet Res 2020 Mar 4;16(1):78.
    doi: 10.1186/s12917-020-02295-6pmc: PMC7057583pubmed: 32131835google scholar: lookup
  11. Dougal K, de la Fuente G, Harris PA, Girdwood SE, Pinloche E, Geor RJ, Nielsen BD, Schott HC 2nd, Elzinga S, Newbold CJ. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing.. PLoS One 2014;9(2):e87424.
  12. Argenzio RA, Southworth M, Stevens CE. Sites of organic acid production and absorption in the equine gastrointestinal tract.. Am J Physiol 1974 May;226(5):1043-50.
  13. Hintz HF, Argenzio RA, Schryver HF. Digestion coefficients, blood glucose levels and molar percentage of volatile acids in intestinal fluid of ponies fed varying forage-grain ratios.. J Anim Sci 1971 Nov;33(5):992-5.
    doi: 10.2527/jas1971.335992xpubmed: 5119977google scholar: lookup
  14. Daly K, Proudman CJ, Duncan SH, Flint HJ, Dyer J, Shirazi-Beechey SP. Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease.. Br J Nutr 2012 Apr;107(7):989-95.
    doi: 10.1017/S0007114511003825pubmed: 21816118google scholar: lookup
  15. De Fombelle A., Julliand V., Drogoul C., Jacotot E. Feeding and Microbial Disorders in Horses: 1-Effects of an Abrupt Incorporation of Two Levels of Barley in a Hay Diet on Microbial Profile and Activities. J. Equine Vet. Sci. 2001;21:439u2013445. doi: 10.1016/S0737-0806(01)70018-4.
  16. De Fombelle A., Varloud M., Goachet A.-G., Jacotot E., Philippeau C., Drogoul C., Julliand V. Characterization of the Microbial and Biochemical Profile of the Different Segments of the Digestive Tract in Horses given Two Distinct Diets. Anim. Sci. 2003;77:293u2013304. doi: 10.1017/S1357729800059038.
    doi: 10.1017/S1357729800059038google scholar: lookup
  17. Muhonen S, Julliand V, Lindberg JE, Bertilsson J, Jansson A. Effects on the equine colon ecosystem of grass silage and haylage diets after an abrupt change from hay.. J Anim Sci 2009 Jul;87(7):2291-8.
    doi: 10.2527/jas.2008-1461pubmed: 19329474google scholar: lookup
  18. Elzinga S.E., Weese J.S., Adams A.A. Comparison of the Fecal Microbiota in Horses With Equine Metabolic Syndrome and Metabolically Normal Controls Fed a Similar All-Forage Diet. J. Equine Vet. Sci. 2016;44:9u201316. doi: 10.1016/j.jevs.2016.05.010.
  19. Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine.. J Appl Microbiol 2007 May;102(5):1197-208.
  20. Shirazi-Beechey SP. Molecular insights into dietary induced colic in the horse.. Equine Vet J 2008 Jun;40(4):414-21.
    doi: 10.2746/042516408X314075pubmed: 18487108google scholar: lookup
  21. Respondek F, Goachet AG, Julliand V. Effects of dietary short-chain fructooligosaccharides on the intestinal microflora of horses subjected to a sudden change in diet.. J Anim Sci 2008 Feb;86(2):316-23.
    doi: 10.2527/jas.2006-782pubmed: 17940163google scholar: lookup
  22. Willette JA, Pitta D, Indugu N, Vecchiarelli B, Hennessy ML, Dobbie T, Southwood LL. Experimental crossover study on the effects of withholding feed for 24u2009h on the equine faecal bacterial microbiota in healthy mares.. BMC Vet Res 2021 Jan 5;17(1):3.
    doi: 10.1186/s12917-020-02706-8pmc: PMC7786913pubmed: 33402190google scholar: lookup
  23. Park KD, Park J, Ko J, Kim BC, Kim HS, Ahn K, Do KT, Choi H, Kim HM, Song S, Lee S, Jho S, Kong HS, Yang YM, Jhun BH, Kim C, Kim TH, Hwang S, Bhak J, Lee HK, Cho BW. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq.. BMC Genomics 2012 Sep 12;13:473.
    doi: 10.1186/1471-2164-13-473pmc: PMC3472166pubmed: 22971240google scholar: lookup
  24. Willing B, Vu00f6ru00f6s A, Roos S, Jones C, Jansson A, Lindberg JE. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training.. Equine Vet J 2009 Dec;41(9):908-14.
    doi: 10.2746/042516409X447806pubmed: 20383990google scholar: lookup
  25. Blackmore TM, Dugdale A, Argo CM, Curtis G, Pinloche E, Harris PA, Worgan HJ, Girdwood SE, Dougal K, Newbold CJ, McEwan NR. Strong stability and host specific bacterial community in faeces of ponies.. PLoS One 2013;8(9):e75079.
  26. Wyse CA, McNie KA, Tannahill VJ, Murray JK, Love S. Prevalence of obesity in riding horses in Scotland.. Vet Rec 2008 May 3;162(18):590-1.
    doi: 10.1136/vr.162.18.590pubmed: 18453379google scholar: lookup
  27. National Research Council (U.S.), editor. Nutrient Requirements of Horses. 6th ed. National Academies Press; Washington, DC, USA: 2007. (Animal Nutrition Series).
  28. Gehlen H, Schwarz B, Bartmann C, Gernhardt J, Stu00f6ckle SD. Pituitary Pars Intermedia Dysfunction and Metabolic Syndrome in Donkeys.. Animals (Basel) 2020 Dec 8;10(12).
    doi: 10.3390/ani10122335pmc: PMC7763272pubmed: 33302557google scholar: lookup
  29. Kohnke J. Feeding and Nutrition: The Making of a Champion. Birubi Pacific; Pymble, Australia: 1992. pp. 163u2013166.
  30. Wagner E.L., Tyler P.J. A Comparison of Weight Estimation Methods in Adult Horses. J. Equine Vet. Sci. 2011;31:706u2013710. doi: 10.1016/j.jevs.2011.05.002.
  31. R Core Team . R: A Language and Environment for Statistical Computing. R Foundatioon for Statistical Computing; Vienna, Austria: 2018.
  32. Dugdale AH, Grove-White D, Curtis GC, Harris PA, Argo CM. Body condition scoring as a predictor of body fat in horses and ponies.. Vet J 2012 Nov;194(2):173-8.
    doi: 10.1016/j.tvjl.2012.03.024pubmed: 22578691google scholar: lookup
  33. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodru00edguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vu00e1zquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.. Nat Biotechnol 2019 Aug;37(8):852-857.
    doi: 10.1038/s41587-019-0209-9pmc: PMC7015180pubmed: 31341288google scholar: lookup
  34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glu00f6ckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.. Nucleic Acids Res 2013 Jan;41(Database issue):D590-6.
    doi: 10.1093/nar/gks1219pmc: PMC3531112pubmed: 23193283google scholar: lookup
  35. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.. PLoS One 2013;8(4):e61217.
  36. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., Ou2019Hara R.B., Simpson G.L., Solymos P., et al. [(accessed on 23 March 2021)];Package u2018Veganu2019. 2019 Community Ecology Package; R Package Version 2.5-6. Available online: https://CRAN.R-project.org/package=vegan.
  37. Stevens AJ, Purcell RV, Darling KA, Eggleston MJF, Kennedy MA, Rucklidge JJ. Human gut microbiome changes during a 10 week Randomised Control Trial for micronutrient supplementation in children with attention deficit hyperactivity disorder.. Sci Rep 2019 Jul 12;9(1):10128.
    doi: 10.1038/s41598-019-46146-3pmc: PMC6625977pubmed: 31300667google scholar: lookup
  38. Ragnarsson S, Jansson A. Comparison of grass haylage digestibility and metabolic plasma profile in Icelandic and Standardbred horses.. J Anim Physiol Anim Nutr (Berl) 2011 Jun;95(3):273-9.
  39. Giles SL, Rands SA, Nicol CJ, Harris PA. Obesity prevalence and associated risk factors in outdoor living domestic horses and ponies.. PeerJ 2014;2:e299.
    doi: 10.7717/peerj.299pmc: PMC3970797pubmed: 24711963google scholar: lookup
  40. Morrison P.K., Harris P.A., Maltin C.A., Grove-White D., Barfoot C.F., Argo C.M. Perceptions of Obesity and Management Practices in a UK Population of Leisure-Horse Owners and Managers. J. Equine Vet. Sci. 2017;53:19u201329. doi: 10.1016/j.jevs.2017.01.006.
  41. Obesity and the Show Ringu2014Horse & Hound. [(accessed on 23 March 2021)]; Available online: https://www.horseandhound.co.uk/horse-care/feeding/obesity-and-the-show-ring-62276.
  42. Owers R, Chubbock S. Fight the fat!. Equine Vet J 2013 Jan;45(1):5.
    doi: 10.1111/evj.12008pubmed: 23231382google scholar: lookup
  43. Thatcher CD, Pleasant RS, Geor RJ, Elvinger F. Prevalence of overconditioning in mature horses in southwest Virginia during the summer.. J Vet Intern Med 2012 Nov-Dec;26(6):1413-8.
  44. Pratt-Phillips S.E., Owens K.M., Dowler L.E., Cloninger M.T. Assessment of Resting Insulin and Leptin Concentrations and Their Association With Managerial and Innate Factors in Horses. J. Equine Vet. Sci. 2010;30:127u2013133. doi: 10.1016/j.jevs.2010.01.060.
  45. Robie SM, Janson CH, Smith SC, O'Connor JT Jr. Equine serum lipids: serum lipids and glucose in Morgan and Thoroughbred horses and Shetland ponies.. Am J Vet Res 1975 Dec;36(12):1705-8.
    pubmed: 1200441
  46. Johnson PJ. The equine metabolic syndrome peripheral Cushing's syndrome.. Vet Clin North Am Equine Pract 2002 Aug;18(2):271-93.
    doi: 10.1016/S0749-0739(02)00006-8pubmed: 15635908google scholar: lookup
  47. Dougal K, Harris PA, Edwards A, Pachebat JA, Blackmore TM, Worgan HJ, Newbold CJ. A comparison of the microbiome and the metabolome of different regions of the equine hindgut.. FEMS Microbiol Ecol 2012 Dec;82(3):642-52.
  48. Costa MC, Arroyo LG, Allen-Vercoe E, Stu00e4mpfli HR, Kim PT, Sturgeon A, Weese JS. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene.. PLoS One 2012;7(7):e41484.
  49. Hansen NC, Avershina E, Mydland LT, Nu00e6sset JA, Austbu00f8 D, Moen B, Mu00e5ge I, Rudi K. High nutrient availability reduces the diversity and stability of the equine caecal microbiota.. Microb Ecol Health Dis 2015;26:27216.
    doi: 10.3402/mehd.v26.27216pmc: PMC4526772pubmed: 26246403google scholar: lookup
  50. Stewart HL, Southwood LL, Indugu N, Vecchiarelli B, Engiles JB, Pitta D. Differences in the equine faecal microbiota between horses presenting to a tertiary referral hospital for colic compared with an elective surgical procedure.. Equine Vet J 2019 May;51(3):336-342.
    doi: 10.1111/evj.13010pubmed: 30153353google scholar: lookup
  51. Dougal K, de la Fuente G, Harris PA, Girdwood SE, Pinloche E, Newbold CJ. Identification of a core bacterial community within the large intestine of the horse.. PLoS One 2013;8(10):e77660.
  52. Biddle AS, Tomb JF, Fan Z. Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses.. Front Vet Sci 2018;5:225.
    doi: 10.3389/fvets.2018.00225pmc: PMC6158370pubmed: 30294603google scholar: lookup
  53. Morrison PK, Newbold CJ, Jones E, Worgan HJ, Grove-White DH, Dugdale AH, Barfoot C, Harris PA, Argo CM. The Equine Gastrointestinal Microbiome: Impacts of Age and Obesity.. Front Microbiol 2018;9:3017.
    doi: 10.3389/fmicb.2018.03017pmc: PMC6293011pubmed: 30581426google scholar: lookup
  54. Kaboru00e9 OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories.. Front Cell Infect Microbiol 2020;10:519301.
    doi: 10.3389/fcimb.2020.519301pmc: PMC7734314pubmed: 33330115google scholar: lookup
  55. Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S, Hong SG, Kim OS, Chun J, Lee YK. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.. FEMS Microbiol Ecol 2014 Aug;89(2):465-75.
    doi: 10.1111/1574-6941.12362pmc: PMC4143960pubmed: 24893754google scholar: lookup
  56. Miyashita NT. Contrasting soil bacterial community structure between the phyla Acidobacteria and Proteobacteria in tropical Southeast Asian and temperate Japanese forests.. Genes Genet Syst 2015;90(2):61-77.
    doi: 10.1266/ggs.90.61pubmed: 26399766google scholar: lookup
  57. Delmont TO, Quince C, Shaiber A, Esen u00d6C, Lee ST, Rappu00e9 MS, McLellan SL, Lu00fccker S, Eren AM. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes.. Nat Microbiol 2018 Jul;3(7):804-813.
    doi: 10.1038/s41564-018-0176-9pmc: PMC6792437pubmed: 29891866google scholar: lookup
  58. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest.. Nature 2006 Dec 21;444(7122):1027-31.
    doi: 10.1038/nature05414pubmed: 17183312google scholar: lookup
  59. Webb P, Annis JF. Adaptation to overeating in lean and overweight men and women.. Hum Nutr Clin Nutr 1983 Mar;37(2):117-31.
    pubmed: 6575005
  60. Janssen PH, Kirs M. Structure of the archaeal community of the rumen.. Appl Environ Microbiol 2008 Jun;74(12):3619-25.
    doi: 10.1128/AEM.02812-07pmc: PMC2446570pubmed: 18424540google scholar: lookup
  61. Newbold CJ, Ramos-Morales E. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host.. Animal 2020 Mar;14(S1):s78-s86.
    doi: 10.1017/S1751731119003252pubmed: 32024572google scholar: lookup
  62. Edwards JE, Shetty SA, van den Berg P, Burden F, van Doorn DA, Pellikaan WF, Dijkstra J, Smidt H. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub)species.. Anim Microbiome 2020 Feb 12;2(1):6.
    doi: 10.1186/s42523-020-0023-1pmc: PMC7807809pubmed: 33499982google scholar: lookup
  63. Jensen BB. Methanogenesis in monogastric animals.. Environ Monit Assess 1996 Sep;42(1-2):99-112.
    doi: 10.1007/BF00394044pubmed: 24193495google scholar: lookup
  64. Ishaq SL, Sundset MA, Crouse J, Wright AG. High-throughput DNA sequencing of the moose rumen from different geographical locations reveals a core ruminal methanogenic archaeal diversity and a differential ciliate protozoal diversity.. Microb Genom 2015 Oct;1(4):e000034.
    doi: 10.1099/mgen.0.000034pmc: PMC5320624pubmed: 28348818google scholar: lookup
  65. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components.. Eur J Nutr 2018 Feb;57(1):1-24.
    doi: 10.1007/s00394-017-1445-8pmc: PMC5847071pubmed: 28393285google scholar: lookup
  66. Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites.. Proc Natl Acad Sci U S A 2018 Dec 18;115(51):E11996-E12004.
    doi: 10.1073/pnas.1810550115pmc: PMC6304966pubmed: 30504145google scholar: lookup
  67. Tsoy OV, Ravcheev DA, u010cuklina J, Gelfand MS. Nitrogen Fixation and Molecular Oxygen: Comparative Genomic Reconstruction of Transcription Regulation in Alphaproteobacteria.. Front Microbiol 2016;7:1343.
    doi: 10.3389/fmicb.2016.01343pmc: PMC4999443pubmed: 27617010google scholar: lookup
  68. Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria.. ISME J 2009 Aug;3(8):992-1000.
    doi: 10.1038/ismej.2009.43pubmed: 19404326google scholar: lookup
  69. Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lu00fcbke-Becker A, Gu00fcnther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives.. Anim Microbiome 2019 Nov 13;1(1):14.
    doi: 10.1186/s42523-019-0013-3pmc: PMC7807895pubmed: 33499951google scholar: lookup
  70. Scales BS, Dickson RP, Huffnagle GB. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs.. J Leukoc Biol 2016 Nov;100(5):943-950.
    doi: 10.1189/jlb.3MR0316-106Rpmc: PMC5069096pubmed: 27365534google scholar: lookup
  71. Winter SE, Bu00e4umler AJ. Dysbiosis in the inflamed intestine: chance favors the prepared microbe.. Gut Microbes 2014 Jan-Feb;5(1):71-3.
    doi: 10.4161/gmic.27129pmc: PMC4049941pubmed: 24637596google scholar: lookup
  72. Winter SE, Bu00e4umler AJ. Why related bacterial species bloom simultaneously in the gut: principles underlying the 'Like will to like' concept.. Cell Microbiol 2014 Feb;16(2):179-84.
    doi: 10.1111/cmi.12245pmc: PMC4013256pubmed: 24286560google scholar: lookup
  73. Al Jassim RA, Andrews FM. The bacterial community of the horse gastrointestinal tract and its relation to fermentative acidosis, laminitis, colic, and stomach ulcers.. Vet Clin North Am Equine Pract 2009 Aug;25(2):199-215.
    doi: 10.1016/j.cveq.2009.04.005pubmed: 19580934google scholar: lookup
  74. Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ, McKinnon JJ, McAllister TA. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis.. Appl Environ Microbiol 2013 Jun;79(12):3744-55.
    doi: 10.1128/AEM.03983-12pmc: PMC3675914pubmed: 23584771google scholar: lookup
  75. O'Herrin SM, Kenealy WR. Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens.. Appl Environ Microbiol 1993 Mar;59(3):748-55.
    doi: 10.1128/aem.59.3.748-755.1993pmc: PMC202185pubmed: 8481001google scholar: lookup
  76. Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton IL. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse.. PLoS One 2012;7(3):e32962.
  77. Kobayashi Y. Inclusion of Novel Bacteria in Rumen Microbiology: Need for Basic and Applied Science. Anim. Sci. J. 2006;77:375u2013385. doi: 10.1111/j.1740-0929.2006.00362.x.
  78. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.. Science 2011 Jan 28;331(6016):463-7.
    doi: 10.1126/science.1200387pubmed: 21273488google scholar: lookup
  79. Taxis TM, Wolff S, Gregg SJ, Minton NO, Zhang C, Dai J, Schnabel RD, Taylor JF, Kerley MS, Pires JC, Lamberson WR, Conant GC. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity.. Nucleic Acids Res 2015 Nov 16;43(20):9600-12.
    doi: 10.1093/nar/gkv973pmc: PMC4787786pubmed: 26420832google scholar: lookup
  80. Salis RK, Bruder A, Piggott JJ, Summerfield TC, Matthaei CD. High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiple-stressor research.. Sci Rep 2017 Mar 22;7:44657.
    doi: 10.1038/srep44657pmc: PMC5361126pubmed: 28327636google scholar: lookup
  81. Solomon R., Wein T., Levy B., Reiss V., Zehavi T., Furman O., Jami E. Rumen Protozoa Shape Microbiome Composition and Metabolic Output of Fermentation. bioRxiv. 2020 doi: 10.1101/2020.05.15.080218.
    doi: 10.1101/2020.05.15.080218google scholar: lookup

Citations

This article has been cited 0 times.