Acta veterinaria Scandinavica2020; 62(1); 17; doi: 10.1186/s13028-020-00515-5

The influence of equine body weight gain on inflammatory cytokine expressions of adipose tissue in response to endotoxin challenge.

Abstract: Human obesity is linked with systemic inflammation. However, it is still controversial if equines produce more inflammatory cytokines with increasing body weight and if the production of those show breed type specific patterns. The main objective of this study was to determine if diet induced obesity is associated with increased inflammatory signatures in adipose tissue of equines and if a breed predisposition exists between ponies and horses. Additionally, we aimed to identify adipose tissue depot differences in inflammatory cytokine expression. Nineteen healthy, non-overweight and metabolically healthy equines received a hypercaloric diet for 2 years. Body weight, body condition score and cresty neck score were assessed weekly throughout the study. At three time points, insulin sensitivity was determined by a combined glucose-insulin test. Adipose tissue samples were collected from two intra-abdominal and two subcutaneous depots under general anesthesia at each time point after an endotoxin trigger. In the adipose tissue samples levels of CD68 mRNA (a marker of macrophage infiltration) and pro-inflammatory cytokine mRNA (IL-1β, IL-6 and TNFα) were analyzed with RT-qPCR. As markers of lipid metabolism mRNA levels of lipoprotein lipase (LPL) and fatty acid binding protein 4 (FABP4) were determined with RT-qPCR. Results: CD68 mRNA levels increased with body weight gain in several adipose tissue (AT) depots (Wilcoxon signed rank test with Bonferroni correction; retroperitoneal AT horses: P = 0.023, mesocolonial AT horses: P = 0.023, subcutaneous tail head AT ponies: P = 0.015). In both abdominal depots CD68 mRNA levels were higher than in subcutaneous adipose tissue depots (Kruskal-Wallis-ANOVA with Bonferroni correction: P < 0.05). No breed related differences were found. Pro-inflammatory cytokine mRNA IL-1β, IL-6 and TNFα levels were higher in subcutaneous depots compared to abdominal depots after body weight gain. IL-1β, IL-6 and TNFα mRNA levels of mesocolon adipose tissue were higher in obese horses compared to obese ponies (Mann-Whitney-U test; IL-1β: P = 0.006; IL-6: P = 0.003; TNFα: P = 0.049). In general, horses had higher FABP4 and LPL mRNA levels compared to ponies in neck AT and tail AT at all time points. Conclusions: Our findings suggest an increased invasion of macrophages in intra-abdominal adipose tissue with increasing body weight gain in equines in combination with a low dose endotoxin stimulus. This might predispose equines to obesity related comorbidities. In obese horses mesocolon adipose tissue showed higher inflammatory cytokine expression compared to obese ponies. Additionally, subcutaneous adipose tissue expressed more pro-inflammatory cytokines compared to intra-abdominal adipose tissue. Horses had higher FABP4 and LPL mRNA levels in selected AT depots which may indicate a higher fat storage capacity than in ponies. The differences in lipid storage might be associated with a higher susceptibility to obesity-related comorbidities in ponies in comparison to horses.
Publication Date: 2020-04-22 PubMed ID: 32321549PubMed Central: PMC7178607DOI: 10.1186/s13028-020-00515-5Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The study investigates how increased body weight affects inflammatory responses in horses and ponies, finding that weight gain likely exacerbates inflammation in these animals. It also identifies variations between horse and pony breeds in their inflammatory reactions and lipid storage.

Objective and Methodology

  • The research sets out to determine whether a high-calorie diet could induce obesity and therefore increase inflammatory signatures in equine adipose tissues. It also aims to figure out if there’s any breed-specific predisposition between horses and ponies.
  • Nineteen non-overweight, metabolically healthy ponies and horses were part of the experiment. They were given a hypercaloric diet for 2 years, and their body weight, body condition, and cresty neck score were regularly monitored.
  • For insulin sensitivity checks, a glucose-insulin test was conducted three times during the experiment. Adipose tissues were sampled from the animals under anesthesia after they were triggered with endotoxin.
  • The acquired samples underwent testing with RT-qPCR to quantify levels of CD68 mRNA (a macrophage infiltration marker), pro-inflammatory cytokine mRNA (IL-1β, IL-6, and TNFα), and markers of lipid metabolism mRNA (Lipoprotein Lipase (LPL) and Fatty Acid Binding Protein 4 (FABP4)).

Findings and Conclusion

  • The study found that weight gain correlated with increased CD68 mRNA levels in the adipose tissue of the monitored animals. In both abdominal depots, these levels were higher than in subcutaneous tissues.
  • All breeds presented a similar pattern; however, pro-inflammatory cytokine mRNAs were higher in subcutaneous tissues than in abdominal tissues after weight gain.
  • Obese horses exhibited higher IL-1β, IL-6, and TNFα mRNA levels in mesocolon adipose tissue compared to obese ponies, suggesting a higher inflammatory response in horses lacking in ponies.
  • In terms of lipid storage, horses showed higher FABP4 and LPL mRNA levels than ponies in the neck and tail adipose tissues at all times, implying a superior fat storage capacity in horses.
  • The study concluded that weight gain might increase the occurrence of macrophages in intra-abdominal adipose tissue, thus potentially predisposing ponies and horses to obesity-related illnesses. The variations in lipid storage capacity may be related to a higher susceptibility to such illnesses in ponies compared to horses.

Cite This Article

APA
Blaue D, Schedlbauer C, Starzonek J, Gittel C, Brehm W, Blu00fcher M, Pfeffer M, Vervuert I. (2020). The influence of equine body weight gain on inflammatory cytokine expressions of adipose tissue in response to endotoxin challenge. Acta Vet Scand, 62(1), 17. https://doi.org/10.1186/s13028-020-00515-5

Publication

ISSN: 1751-0147
NlmUniqueID: 0370400
Country: England
Language: English
Volume: 62
Issue: 1
Pages: 17
PII: 17

Researcher Affiliations

Blaue, Dominique
  • Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, An den Tierkliniken 9, 04103, Leipzig, Germany.
Schedlbauer, Carola
  • Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, An den Tierkliniken 9, 04103, Leipzig, Germany.
Starzonek, Janine
  • Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, An den Tierkliniken 9, 04103, Leipzig, Germany.
Gittel, Claudia
  • Department for Horses, Leipzig University, Leipzig, Germany.
Brehm, Walter
  • Department for Horses, Leipzig University, Leipzig, Germany.
Blu00fcher, Matthias
  • Department of Medicine, Leipzig University, Leipzig, Germany.
Pfeffer, Martin
  • Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany.
Vervuert, Ingrid
  • Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, An den Tierkliniken 9, 04103, Leipzig, Germany. ingrid.vervuert@vetmed.uni-leipzig.de.

MeSH Terms

  • Adipose Tissue / drug effects
  • Adipose Tissue / metabolism
  • Animals
  • Antigens, CD / genetics
  • Antigens, Differentiation, Myelomonocytic / genetics
  • Cytokines / genetics
  • Diet / veterinary
  • Endotoxins / pharmacology
  • Fatty Acid-Binding Proteins / genetics
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / physiology
  • Horses / physiology
  • Lipoprotein Lipase / genetics
  • Obesity / veterinary
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Weight Gain / physiology

Grant Funding

  • VE 225/9-1 / Deutsche Forschungsgemeinschaft

Conflict of Interest Statement

The authors declare that they have no competing interests.

References

This article includes 54 references
  1. Blu00fcher M. The distinction of metabolically 'healthy' from 'unhealthy' obese individuals.. Curr Opin Lipidol 2010 Feb;21(1):38-43.
    doi: 10.1097/MOL.0b013e3283346cccpubmed: 19915462google scholar: lookup
  2. Durham AE, Frank N, McGowan CM, Menzies-Gow NJ, Roelfsema E, Vervuert I, Feige K, Fey K. ECEIM consensus statement on equine metabolic syndrome.. J Vet Intern Med 2019 Mar;33(2):335-349.
    doi: 10.1111/jvim.15423pmc: PMC6430910pubmed: 30724412google scholar: lookup
  3. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation.. Diabet Med 2006 May;23(5):469-80.
  4. Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ. Equine metabolic syndrome.. J Vet Intern Med 2010 May-Jun;24(3):467-75.
  5. Blu00fcher M. Adipose tissue dysfunction in obesity.. Exp Clin Endocrinol Diabetes 2009 Jun;117(6):241-50.
    doi: 10.1055/s-0029-1192044pubmed: 19358089google scholar: lookup
  6. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance.. Eur Cytokine Netw 2006 Mar;17(1):4-12.
    pubmed: 16613757
  7. Hotamisligil GS. Inflammation and metabolic disorders.. Nature 2006 Dec 14;444(7121):860-7.
    doi: 10.1038/nature05485pubmed: 17167474google scholar: lookup
  8. Vick MM, Adams AA, Murphy BA, Sessions DR, Horohov DW, Cook RF, Shelton BJ, Fitzgerald BP. Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horse.. J Anim Sci 2007 May;85(5):1144-55.
    doi: 10.2527/jas.2006-673pubmed: 17264235google scholar: lookup
  9. Suagee JK, Corl BA, Crisman MV, Pleasant RS, Thatcher CD, Geor RJ. Relationships between body condition score and plasma inflammatory cytokines, insulin, and lipids in a mixed population of light-breed horses.. J Vet Intern Med 2013 Jan-Feb;27(1):157-63.
    doi: 10.1111/jvim.12021pubmed: 23216530google scholar: lookup
  10. Banse HE, Holbrook TC, Frank N, McFarlane D. Relationship of skeletal muscle inflammation with obesity and obesity-associated hyperinsulinemia in horses.. Can J Vet Res 2016 Jul;80(3):217-24.
    pmc: PMC4924556pubmed: 27408335
  11. Bamford NJ, Potter SJ, Baskerville CL, Harris PA, Bailey SR. Effect of increased adiposity on insulin sensitivity and adipokine concentrations in different equine breeds adapted to cereal-rich or fat-rich meals.. Vet J 2016 Aug;214:14-20.
    doi: 10.1016/j.tvjl.2016.02.002pubmed: 27387720google scholar: lookup
  12. Basinska K, Marycz K, u015aieszek A, Nicpou0144 J. The production and distribution of IL-6 and TNF-a in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome.. J Vet Sci 2015;16(1):113-20.
    doi: 10.4142/jvs.2015.16.1.113pmc: PMC4367141pubmed: 25269712google scholar: lookup
  13. Holbrook TC, Tipton T, McFarlane D. Neutrophil and cytokine dysregulation in hyperinsulinemic obese horses.. Vet Immunol Immunopathol 2012 Jan 15;145(1-2):283-9.
    doi: 10.1016/j.vetimm.2011.11.013pubmed: 22169327google scholar: lookup
  14. Waller AP, Huettner L, Kohler K, Lacombe VA. Novel link between inflammation and impaired glucose transport during equine insulin resistance.. Vet Immunol Immunopathol 2012 Oct 15;149(3-4):208-15.
    doi: 10.1016/j.vetimm.2012.07.003pubmed: 22871576google scholar: lookup
  15. Despru00e9s JP, Lemieux I. Abdominal obesity and metabolic syndrome.. Nature 2006 Dec 14;444(7121):881-7.
    doi: 10.1038/nature05488pubmed: 17167477google scholar: lookup
  16. Bruynsteen L, Erkens T, Peelman LJ, Ducatelle R, Janssens GP, Harris PA, Hesta M. Expression of inflammation-related genes is associated with adipose tissue location in horses.. BMC Vet Res 2013 Dec 2;9:240.
    doi: 10.1186/1746-6148-9-240pmc: PMC4220830pubmed: 24295090google scholar: lookup
  17. van Eps AW, Pollitt CC. Equine laminitis induced with oligofructose.. Equine Vet J 2006 May;38(3):203-8.
    doi: 10.2746/042516406776866327pubmed: 16706272google scholar: lookup
  18. Geor RJ. Metabolic predispositions to laminitis in horses and ponies: obesity, insulin resistance and metabolic syndromes. J Equine Vet Sci. 2008;28:753u2013759. doi: 10.1016/j.jevs.2008.10.016.
  19. Tu00f3th F, Frank N, Chameroy KA, Bostont RC. Effects of endotoxaemia and carbohydrate overload on glucose and insulin dynamics and the development of laminitis in horses.. Equine Vet J 2009 Dec;41(9):852-8.
    doi: 10.2746/042516409X479027pubmed: 20383981google scholar: lookup
  20. Suagee JK, Corl BA, Hulver MW, McCutcheon LJ, Geor RJ. Effects of hyperinsulinemia on glucose and lipid transporter expression in insulin-sensitive horses.. Domest Anim Endocrinol 2011 Apr;40(3):173-81.
  21. Kersten S. Physiological regulation of lipoprotein lipase.. Biochim Biophys Acta 2014 Jul;1841(7):919-33.
    doi: 10.1016/j.bbalip.2014.03.013pubmed: 24721265google scholar: lookup
  22. Costabile G, Annuzzi G, Di Marino L, De Natale C, Giacco R, Bozzetto L, Cipriano P, Santangelo C, Masella R, Rivellese AA. Fasting and post-prandial adipose tissue lipoprotein lipase and hormone-sensitive lipase in obesity and type 2 diabetes.. J Endocrinol Invest 2011 May;34(5):e110-4.
    doi: 10.1007/BF03347469pubmed: 20926921google scholar: lookup
  23. Schmidt O, Deegen E, Fuhrmann H, Du00fchlmeier R, Sallmann HP. Effects of fat feeding and energy level on plasma metabolites and hormones in Shetland ponies.. J Vet Med A Physiol Pathol Clin Med 2001 Feb;48(1):39-49.
  24. Geelen SN, Jansen WL, Geelen MJ, Sloet van Oldruitenborgh-Oosterbaan MM, Beynen AC. Lipid metabolism in equines fed a fat-rich diet.. Int J Vitam Nutr Res 2000 May;70(3):148-52.
    doi: 10.1024/0300-9831.70.3.148pubmed: 10883408google scholar: lookup
  25. Makowski L, Hotamisligil GS. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis.. Curr Opin Lipidol 2005 Oct;16(5):543-8.
  26. Queipo-Ortuu00f1o MI, Escotu00e9 X, Ceperuelo-Mallafru00e9 V, Garrido-Sanchez L, Miranda M, Clemente-Postigo M, Pu00e9rez-Pu00e9rez R, Peral B, Cardona F, Fernu00e1ndez-Real JM, Tinahones FJ, Vendrell J. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels.. PLoS One 2012;7(11):e48605.
  27. Carroll CL, Huntington PJ. Body condition scoring and weight estimation of horses.. Equine Vet J 1988 Jan;20(1):41-5.
  28. Carter RA, Geor RJ, Burton Staniar W, Cubitt TA, Harris PA. Apparent adiposity assessed by standardised scoring systems and morphometric measurements in horses and ponies.. Vet J 2009 Feb;179(2):204-10.
    doi: 10.1016/j.tvjl.2008.02.029pubmed: 18440844google scholar: lookup
  29. Flachowsky G, Kamphues J, Rodehutscord M, Schenkel H, Staudacher W, Su00fcdekum K-H, et al., editors. Empfehlungen zur Energie- und Nu00e4hrstoffversorgung von Pferden. Frankfurt am Main: DLG Verlag; 2014.
  30. Eiler H, Frank N, Andrews FM, Oliver JW, Fecteau KA. Physiologic assessment of blood glucose homeostasis via combined intravenous glucose and insulin testing in horses.. Am J Vet Res 2005 Sep;66(9):1598-604.
    doi: 10.2460/ajvr.2005.66.1598pubmed: 16261835google scholar: lookup
  31. Bussiu00e8res G, Jacques C, Lainay O, Beauchamp G, Leblond A, Cadoru00e9 JL, Desmaiziu00e8res LM, Cuvelliez SG, Troncy E. Development of a composite orthopaedic pain scale in horses.. Res Vet Sci 2008 Oct;85(2):294-306.
    doi: 10.1016/j.rvsc.2007.10.011pubmed: 18061637google scholar: lookup
  32. RAABO E, TERKILDSEN TC. On the enzymatic determination of blood glucose.. Scand J Clin Lab Invest 1960;12(4):402-7.
    doi: 10.3109/00365516009065404pubmed: 13738785google scholar: lookup
  33. Jacobsen S, Kjelgaard-Hansen M, Hagbard Petersen H, Jensen AL. Evaluation of a commercially available human serum amyloid A (SAA) turbidometric immunoassay for determination of equine SAA concentrations.. Vet J 2006 Sep;172(2):315-9.
    doi: 10.1016/j.tvjl.2005.04.021pubmed: 15950503google scholar: lookup
  34. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations.. Biotechnol Lett 2004 Mar;26(6):509-15.
  35. Ku00f6ller G, Gieseler T, Schusser GF. Hu00e4matologische und blutchemische Referenzbereiche bei Pferden unterschiedlicher Rasse und Altersgruppen basierend auf neuesten labordiagnostischen Methoden. Pferdeheilkunde. 2014;30:381u2013393. doi: 10.21836/PEM20140402.
    doi: 10.21836/PEM20140402google scholar: lookup
  36. Blaue D, Schedlbauer C, Starzonek J, Gittel C, Brehm W, Einspanier A, Vervuert I. Effects of body weight gain on insulin and lipid metabolism in equines.. Domest Anim Endocrinol 2019 Jul;68:111-118.
  37. Tadros EM, Frank N, Donnell RL. Effects of equine metabolic syndrome on inflammatory responses of horses to intravenous lipopolysaccharide infusion.. Am J Vet Res 2013 Jul;74(7):1010-9.
    doi: 10.2460/ajvr.74.7.1010pubmed: 23802673google scholar: lookup
  38. Vick MM, Murphy BA, Sessions DR, Reedy SE, Kennedy EL, Horohov DW, Cook RF, Fitzgerald BP. Effects of systemic inflammation on insulin sensitivity in horses and inflammatory cytokine expression in adipose tissue.. Am J Vet Res 2008 Jan;69(1):130-9.
    doi: 10.2460/ajvr.69.1.130pubmed: 18167098google scholar: lookup
  39. Nieto JE, MacDonald MH, Braim AE, Aleman M. Effect of lipopolysaccharide infusion on gene expression of inflammatory cytokines in normal horses in vivo.. Equine Vet J 2009 Sep;41(7):717-9.
    doi: 10.2746/042516409X464780pubmed: 19927593google scholar: lookup
  40. Jacobsen S, Jensen JC, Frei S, Jensen AL, Thoefner MB. Use of serum amyloid A and other acute phase reactants to monitor the inflammatory response after castration in horses: a field study.. Equine Vet J 2005 Nov;37(6):552-6.
    doi: 10.2746/042516405775314853pubmed: 16295934google scholar: lookup
  41. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue.. J Clin Invest 2003 Dec;112(12):1796-808.
    doi: 10.1172/JCI19246pmc: PMC296995pubmed: 14679176google scholar: lookup
  42. Siedek EM, Honnah-Symns N, Fincham SC, Mayall S, Hamblin AS. Equine macrophage identification with an antibody (Ki-M6) to human CD68 and a new monoclonal antibody (JB10).. J Comp Pathol 2000 Feb-Apr;122(2-3):145-54.
    doi: 10.1053/jcpa.1999.0351pubmed: 10684683google scholar: lookup
  43. Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, Ranganathan G, Peterson CA, McGehee RE, Kern PA. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone.. Diabetes 2005 Aug;54(8):2305-13.
    doi: 10.2337/diabetes.54.8.2305pubmed: 16046295google scholar: lookup
  44. Klu00f6ting N, Fasshauer M, Dietrich A, Kovacs P, Schu00f6n MR, Kern M, Stumvoll M, Blu00fcher M. Insulin-sensitive obesity.. Am J Physiol Endocrinol Metab 2010 Sep;299(3):E506-15.
    doi: 10.1152/ajpendo.00586.2009pubmed: 20570822google scholar: lookup
  45. Siegers EW, de Ruijter-Villani M, van Doorn DA, Stout TAE, Roelfsema E. Ultrasonographic measurements of localized fat accumulation in Shetland pony mares fed a normal v. a high energy diet for 2 years.. Animal 2018 Aug;12(8):1602-1610.
    doi: 10.1017/s1751731117003251pubmed: 29198235google scholar: lookup
  46. Harman-Boehm I, Blu00fcher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Klu00f6ting N, Stumvoll M, Bashan N, Rudich A. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity.. J Clin Endocrinol Metab 2007 Jun;92(6):2240-7.
    doi: 10.1210/jc.2006-1811pubmed: 17374712google scholar: lookup
  47. Suagee JK, Burk AO, Quinn RW, Hartsock TG, Douglass LW. Effects of diet and weight gain on circulating tumour necrosis factor-u03b1 concentrations in Thoroughbred geldings.. J Anim Physiol Anim Nutr (Berl) 2011 Apr;95(2):161-70.
  48. Burns TA, Geor RJ, Mudge MC, McCutcheon LJ, Hinchcliff KW, Belknap JK. Proinflammatory cytokine and chemokine gene expression profiles in subcutaneous and visceral adipose tissue depots of insulin-resistant and insulin-sensitive light breed horses.. J Vet Intern Med 2010 Jul-Aug;24(4):932-9.
  49. Frank N, Elliott SB, Brandt LE, Keisler DH. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance.. J Am Vet Med Assoc 2006 May 1;228(9):1383-90.
    doi: 10.2460/javma.228.9.1383pubmed: 16649943google scholar: lookup
  50. Xu A, Tso AW, Cheung BM, Wang Y, Wat NM, Fong CH, Yeung DC, Janus ED, Sham PC, Lam KS. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study.. Circulation 2007 Mar 27;115(12):1537-43.
  51. Su D, Zhang CL, Gao YC, Liu XY, Li CP, Huangfu J, Xiao R. Gene Expression and Correlation of Pten and Fabp4 in Liver, Muscle, and Adipose Tissues of Type 2 Diabetes Rats.. Med Sci Monit 2015 Nov 22;21:3616-21.
    doi: 10.12659/msm.895490pmc: PMC4662239pubmed: 26591002google scholar: lookup
  52. Djoussu00e9 L, Khawaja O, Bartz TM, Biggs ML, Ix JH, Zieman SJ, Kizer JR, Tracy RP, Siscovick DS, Mukamal KJ. Plasma fatty acid-binding protein 4, nonesterified fatty acids, and incident diabetes in older adults.. Diabetes Care 2012 Aug;35(8):1701-7.
    doi: 10.2337/dc11-1690pmc: PMC3402261pubmed: 22584136google scholar: lookup
  53. Fried SK, Russell CD, Grauso NL, Brolin RE. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men.. J Clin Invest 1993 Nov;92(5):2191-8.
    doi: 10.1172/JCI116821pmc: PMC288398pubmed: 8227334google scholar: lookup
  54. Schedlbauer C, Blaue D, Gericke M, Blu00fcher M, Starzonek J, Gittel C, Brehm W, Vervuert I. Impact of body weight gain on hepatic metabolism and hepatic inflammatory cytokines in comparison of Shetland pony geldings and Warmblood horse geldings.. PeerJ 2019;7:e7069.
    doi: 10.7717/peerj.7069pmc: PMC6557249pubmed: 31211018google scholar: lookup

Citations

This article has been cited 1 times.
  1. Tong Z, Yang X, Li J. Research progress on the mechanism of interleukin-1u03b2 on epiphyseal plate chondrocytes.. Eur J Med Res 2022 Dec 27;27(1):313.
    doi: 10.1186/s40001-022-00893-8pubmed: 36575508google scholar: lookup