The Veterinary clinics of North America. Equine practice2018; 34(1); 1-12; doi: 10.1016/j.cveq.2017.11.005

Understanding the Intestinal Microbiome in Health and Disease.

Abstract: This article provides readers with the basic concepts necessary to understand studies using recent molecular methods performed in intestinal microbiome assessment, with special emphasis on the high throughput sequencing. This review also summarizes the current knowledge on this topic and discusses future insights on the interaction between the intestinal microbiome and equine health.
Publication Date: 2018-02-07 PubMed ID: 29402480DOI: 10.1016/j.cveq.2017.11.005Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Review

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article explores concepts essential to understand studies conducted in intestinal microbiome assessment, emphasizing high throughput sequencing. It further provides the current knowledge in this field and discusses the correlation between the intestinal microbiome and equine health.

Understanding the Intestinal Microbiome

  • The research starts by introducing the topic of the intestinal microbiome. It highlights that the intestinal microbiome refers to the collection of microorganisms such as bacteria, viruses, and fungi that live in the intestinal tract. These organisms play a crucial role in health by influencing nutrients absorption, immune responses, and protection against pathogenic organisms.
  • The paper discusses how the researchers used molecular methods to assess the intestinal microbiome, with a special emphasis on high throughput sequencing. High throughput sequencing is a rapidly evolving technology that allows scientists to sequence DNA and RNA much more quickly and affordably than ever before. This method provides a more detailed and accurate depiction of the microbiome’s composition and function.

Current Findings and Future Directions

  • The article goes on to summarize the current understanding of the intestinal microbiome. It refers to various studies that have identified associations between the intestinal microbiome’s composition and various disease states. Evidence suggests that imbalances in the microbiome, known as dysbiosis, can contribute to conditions such as inflammatory bowel disease, obesity, and even mental health disorders.
  • Next, the paper focuses specifically on research related to equine health. Research shows that the equine intestinal microbiome plays a crucial role in horse health and disease. For instance, changes in the microbiome can impact a horse’s susceptibility to colic, laminitis, and other conditions. Therefore, it is reasoned that future research should explore this area more extensively.
  • The conclusion offers possibilities for future insights, hoping to broaden the understanding of how the intestinal microbiome interacts with equine health. By investigating the microbiome further, scientists can potentially develop new treatments or preventive measures for various health conditions that are connected to the balance of the microbiome.

Cite This Article

APA
Costa MC, Weese JS. (2018). Understanding the Intestinal Microbiome in Health and Disease. Vet Clin North Am Equine Pract, 34(1), 1-12. https://doi.org/10.1016/j.cveq.2017.11.005

Publication

ISSN: 1558-4224
NlmUniqueID: 8511904
Country: United States
Language: English
Volume: 34
Issue: 1
Pages: 1-12
PII: S0749-0739(17)30918-5

Researcher Affiliations

Costa, Marcio Carvalho
  • Department of Veterinary Biomedicine, University of Montreal, 3200 Rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada. Electronic address: marcio.costa@umontreal.ca.
Weese, Jeffrey Scott
  • Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.

MeSH Terms

  • Animals
  • Gastrointestinal Microbiome
  • Horse Diseases / microbiology
  • Horses / microbiology
  • Humans

Citations

This article has been cited 42 times.
  1. Zhao Y, Ren X, Wu H, Hu H, Cheng C, Du M, Huang Y, Zhao X, Wang L, Yi L, Tao J, Li Y, Lin Y, Su S, Dugarjaviin M. Diversity and functional prediction of fungal communities in different segments of mongolian horse gastrointestinal tracts.. BMC Microbiol 2023 Sep 9;23(1):253.
    doi: 10.1186/s12866-023-03001-wpubmed: 37689675google scholar: lookup
  2. Pacheco-Torres I, Hernu00e1ndez-Su00e1nchez D, Garcu00eda-De la Peu00f1a C, Tarango-Aru00e1mbula LA, Crosby-Galvu00e1n MM, Su00e1nchez-Santillu00e1n P. Analysis of the Intestinal and Faecal Bacterial Microbiota of the Cervidae Family Using 16S Next-Generation Sequencing: A Review.. Microorganisms 2023 Jul 24;11(7).
  3. Lee J, Kang YJ, Kim YK, Choi JY, Shin SM, Shin MC. Exploring the Influence of Growth-Associated Host Genetics on the Initial Gut Microbiota in Horses.. Genes (Basel) 2023 Jun 27;14(7).
    doi: 10.3390/genes14071354pubmed: 37510259google scholar: lookup
  4. Li L, Renaud DL, Goetz HM, Jessop E, Costa MC, Gamsju00e4ger L, Gomez DE. Effect of time of sample collection after onset of diarrhea on fecal microbiota composition of calves.. J Vet Intern Med 2023 Jul-Aug;37(4):1588-1593.
    doi: 10.1111/jvim.16801pubmed: 37366337google scholar: lookup
  5. Zakia LS, Gomez DE, Caddey BB, Boerlin P, Surette MG, Arroyo LG. Direct and culture-enriched 16S rRNA sequencing of cecal content of healthy horses and horses with typhlocolitis.. PLoS One 2023;18(4):e0284193.
    doi: 10.1371/journal.pone.0284193pubmed: 37053174google scholar: lookup
  6. Di Pietro R, Arroyo LG, Leclere M, Costa M. Effects of concentrated fecal microbiota transplant on the equine fecal microbiota after antibiotic-induced dysbiosis.. Can J Vet Res 2023 Apr;87(2):85-96.
    pubmed: 37020579
  7. Theelen MJP, Luiken REC, Wagenaar JA, Sloet van Oldruitenborgh-Oosterbaan MM, Rossen JWA, Schaafstra FJWC, van Doorn DA, Zomer AL. Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome.. Microbiome 2023 Feb 27;11(1):33.
    doi: 10.1186/s40168-023-01465-6pubmed: 36850017google scholar: lookup
  8. Bustamante CC, de Paula VB, Rabelo IP, Fernandes CC, Kishi LT, Canola PA, Lemos EGM, Valadu00e3o CAA. Effects of Starch Overload and Cecal Buffering on Fecal Microbiota of Horses.. Animals (Basel) 2022 Dec 6;12(23).
    doi: 10.3390/ani12233435pubmed: 36496956google scholar: lookup
  9. Yang G, Xiang Y, Wang S, Tao Y, Xie L, Bao L, Shen K, Li J, Hu B, Wen C, Kumar V, Peng M. Response of Intestinal Microbiota to the Variation in Diets in Grass Carp (Ctenopharyngodon idella).. Metabolites 2022 Nov 15;12(11).
    doi: 10.3390/metabo12111115pubmed: 36422256google scholar: lookup
  10. Liu Q, An X, Chen Y, Deng Y, Niu H, Ma R, Zhao H, Cao W, Wang X, Wang M. Effects of Auricularia auricula Polysaccharides on Gut Microbiota and Metabolic Phenotype in Mice.. Foods 2022 Sep 4;11(17).
    doi: 10.3390/foods11172700pubmed: 36076885google scholar: lookup
  11. Cohen A, Poupko L, Craddock HA, Motro Y, Khalfin B, Zelinger A, Tirosh-Levy S, Blum SE, Steinman A, Moran-Gilad J. Fecal Microbiome Features Associated with Extended-Spectrum u03b2-Lactamase-Producing Enterobacterales Carriage in Dairy Heifers.. Animals (Basel) 2022 Jul 6;12(14).
    doi: 10.3390/ani12141738pubmed: 35883285google scholar: lookup
  12. Lara F, Castro R, Thomson P. Changes in the gut microbiome and colic in horses: Are they causes or consequences?. Open Vet J 2022 Mar-Apr;12(2):242-249.
    doi: 10.5455/OVJ.2022.v12.i2.12pubmed: 35603065google scholar: lookup
  13. Gilroy R, Leng J, Ravi A, Adriaenssens EM, Oren A, Baker D, La Ragione RM, Proudman C, Pallen MJ. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity.. PeerJ 2022;10:e13084.
    doi: 10.7717/peerj.13084pubmed: 35345588google scholar: lookup
  14. Sung CH, Marsilio S, Chow B, Zornow KA, Slovak JE, Pilla R, Lidbury JA, Steiner JM, Park SY, Hong MP, Hill SL, Suchodolski JS. Dysbiosis index to evaluate the fecal microbiota in healthy cats and cats with chronic enteropathies.. J Feline Med Surg 2022 Jun;24(6):e1-e12.
    doi: 10.1177/1098612X221077876pubmed: 35266809google scholar: lookup
  15. Di Pietro R, Arroyo LG, Leclere M, Costa MC. Species-Level Gut Microbiota Analysis after Antibiotic-Induced Dysbiosis in Horses.. Animals (Basel) 2021 Sep 30;11(10).
    doi: 10.3390/ani11102859pubmed: 34679880google scholar: lookup
  16. Laustsen L, Edwards JE, Hermes GDA, Lu00fathersson N, van Doorn DA, Okrathok S, Kujawa TJ, Smidt H. Free Faecal Water: Analysis of Horse Faecal Microbiota and the Impact of Faecal Microbial Transplantation on Symptom Severity.. Animals (Basel) 2021 Sep 23;11(10).
    doi: 10.3390/ani11102776pubmed: 34679798google scholar: lookup
  17. Costa M, Di Pietro R, Bessegatto JA, Pereira PFV, Stievani FC, Gomes RG, Lisbu00f4a JAN, Weese JS. Evaluation of changes in microbiota after fecal microbiota transplantation in 6 diarrheic horses.. Can Vet J 2021 Oct;62(10):1123-1130.
    pubmed: 34602643
  18. Goodman-Davis R, Figurska M, Cywinska A. Gut Microbiota Manipulation in Foals-Naturopathic Diarrhea Management, or Unsubstantiated Folly?. Pathogens 2021 Sep 4;10(9).
    doi: 10.3390/pathogens10091137pubmed: 34578169google scholar: lookup
  19. Bruer GG, Gu00f6decke D, Kietzmann M, Meiu00dfner J. Influence of the H1 Antihistamine Mepyramine on the Antibacterial Effect of Florfenicol in Pigs.. Vet Sci 2021 Sep 16;8(9).
    doi: 10.3390/vetsci8090197pubmed: 34564591google scholar: lookup
  20. DiBona E, Pinnell LJ, Heising-Huang A, Geist S, Turner JW, Seemann F. A Holistic Assessment of Polyethylene Fiber Ingestion in Larval and Juvenile Japanese Medaka Fish.. Front Physiol 2021;12:668645.
    doi: 10.3389/fphys.2021.668645pubmed: 34421633google scholar: lookup
  21. Quiu00f1ones-Pu00e9rez C, Hidalgo M, Ortiz I, Crespo F, Vega-Pla JL. Characterization of the seminal bacterial microbiome of healthy, fertile stallions using next-generation sequencing.. Anim Reprod 2021;18(2):e20200052.
    doi: 10.1590/1984-3143-AR2020-0052pubmed: 34394753google scholar: lookup
  22. Arnold CE, Pilla R, Chaffin MK, Leatherwood JL, Wickersham TA, Callaway TR, Lawhon SD, Lidbury JA, Steiner JM, Suchodolski JS. The effects of signalment, diet, geographic location, season, and colitis associated with antimicrobial use or Salmonella infection on the fecal microbiome of horses.. J Vet Intern Med 2021 Sep;35(5):2437-2448.
    doi: 10.1111/jvim.16206pubmed: 34268795google scholar: lookup
  23. Theelen MJP, Luiken REC, Wagenaar JA, Sloet van Oldruitenborgh-Oosterbaan MM, Rossen JWA, Zomer AL. The Equine Faecal Microbiota of Healthy Horses and Ponies in The Netherlands: Impact of Host and Environmental Factors.. Animals (Basel) 2021 Jun 12;11(6).
    doi: 10.3390/ani11061762pubmed: 34204691google scholar: lookup
  24. Hu D, Chao Y, Zhang B, Wang C, Qi Y, Ente M, Zhang D, Li K, Mok KM. Effects of Gasterophilus pecorum infestation on the intestinal microbiota of the rewilded Przewalski's horses in China.. PLoS One 2021;16(5):e0251512.
    doi: 10.1371/journal.pone.0251512pubmed: 33974667google scholar: lookup
  25. Mach N, Moroldo M, Rau A, Lecardonnel J, Le Moyec L, Robert C, Barrey E. Understanding the Holobiont: Crosstalk Between Gut Microbiota and Mitochondria During Long Exercise in Horse.. Front Mol Biosci 2021;8:656204.
    doi: 10.3389/fmolb.2021.656204pubmed: 33898524google scholar: lookup
  26. Martin de Bustamante M, Plummer C, MacNicol J, Gomez D. Impact of Ambient Temperature Sample Storage on the Equine Fecal Microbiota.. Animals (Basel) 2021 Mar 15;11(3).
    doi: 10.3390/ani11030819pubmed: 33803934google scholar: lookup
  27. Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lu00fcbke-Becker A, Gu00fcnther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives.. Anim Microbiome 2019 Nov 13;1(1):14.
    doi: 10.1186/s42523-019-0013-3pubmed: 33499951google scholar: lookup
  28. Gu00f3rniak W, Cholewiu0144ska P, Szeligowska N, Wou0142oszyu0144ska M, Soroko M, Czyu017c K. Effect of Intense Exercise on the Level of Bacteroidetes and Firmicutes Phyla in the Digestive System of Thoroughbred Racehorses.. Animals (Basel) 2021 Jan 24;11(2).
    doi: 10.3390/ani11020290pubmed: 33498857google scholar: lookup
  29. Walshe N, Mulcahy G, Hodgkinson J, Peachey L. No Worm Is an Island; The Influence of Commensal Gut Microbiota on Cyathostomin Infections.. Animals (Basel) 2020 Dec 5;10(12).
    doi: 10.3390/ani10122309pubmed: 33291496google scholar: lookup
  30. Barba M, Martu00ednez-Bovu00ed R, Quereda JJ, Mocu00e9 ML, Plaza-Du00e1vila M, Jimu00e9nez-Trigos E, Gu00f3mez-Martu00edn u00c1, Gonzu00e1lez-Torres P, Carbonetto B, Garcu00eda-Rosellu00f3 E. Vaginal Microbiota Is Stable throughout the Estrous Cycle in Arabian Maress.. Animals (Basel) 2020 Nov 3;10(11).
    doi: 10.3390/ani10112020pubmed: 33153053google scholar: lookup
  31. Cerri S, Taminiau B, de Lusancay AH, Lecoq L, Amory H, Daube G, Cesarini C. Effect of oral administration of omeprazole on the microbiota of the gastric glandular mucosa and feces of healthy horses.. J Vet Intern Med 2020 Nov;34(6):2727-2737.
    doi: 10.1111/jvim.15937pubmed: 33063923google scholar: lookup
  32. Mienaltowski MJ, Belt A, Henderson JD, Boyd TN, Marter N, Maga EA, DePeters EJ. Psyllium supplementation is associated with changes in the fecal microbiota of horses.. BMC Res Notes 2020 Sep 29;13(1):459.
    doi: 10.1186/s13104-020-05305-wpubmed: 32993781google scholar: lookup
  33. Garber A, Hastie P, McGuinness D, Malarange P, Murray JA. Abrupt dietary changes between grass and hay alter faecal microbiota of ponies.. PLoS One 2020;15(8):e0237869.
    doi: 10.1371/journal.pone.0237869pubmed: 32810164google scholar: lookup
  34. Arroyo LG, Rossi L, Santos BP, Gomez DE, Surette MG, Costa MC. Luminal and Mucosal Microbiota of the Cecum and Large Colon of Healthy and Diarrheic Horses.. Animals (Basel) 2020 Aug 12;10(8).
    doi: 10.3390/ani10081403pubmed: 32806591google scholar: lookup
  35. Arnold CE, Isaiah A, Pilla R, Lidbury J, Coverdale JS, Callaway TR, Lawhon SD, Steiner J, Suchodolski JS. The cecal and fecal microbiomes and metabolomes of horses before and after metronidazole administration.. PLoS One 2020;15(5):e0232905.
    doi: 10.1371/journal.pone.0232905pubmed: 32442163google scholar: lookup
  36. Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y, Crisci E, Pennarun S, Dhorne-Pollet S, Foury A, Moisan MP, Lansade L. Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes.. Sci Rep 2020 May 20;10(1):8311.
    doi: 10.1038/s41598-020-65444-9pubmed: 32433513google scholar: lookup
  37. Morrison PK, Newbold CJ, Jones E, Worgan HJ, Grove-White DH, Dugdale AH, Barfoot C, Harris PA, Argo CM. Effect of age and the individual on the gastrointestinal bacteriome of ponies fed a high-starch diet.. PLoS One 2020;15(5):e0232689.
    doi: 10.1371/journal.pone.0232689pubmed: 32384105google scholar: lookup
  38. McKinney CA, Oliveira BCM, Bedenice D, Paradis MR, Mazan M, Sage S, Sanchez A, Widmer G. The fecal microbiota of healthy donor horses and geriatric recipients undergoing fecal microbial transplantation for the treatment of diarrhea.. PLoS One 2020;15(3):e0230148.
    doi: 10.1371/journal.pone.0230148pubmed: 32155205google scholar: lookup
  39. Liu G, Bou G, Su S, Xing J, Qu H, Zhang X, Wang X, Zhao Y, Dugarjaviin M. Microbial diversity within the digestive tract contents of Dezhou donkeys.. PLoS One 2019;14(12):e0226186.
    doi: 10.1371/journal.pone.0226186pubmed: 31834903google scholar: lookup
  40. Srivastava A, Lall R, Talukder J, DuBourdieu D, Gupta RC. Iron Transport Tocopheryl Polyethylene Glycol Succinate in Animal Health and Diseases.. Molecules 2019 Nov 25;24(23).
    doi: 10.3390/molecules24234289pubmed: 31775281google scholar: lookup
  41. Peachey LE, Castro C, Molena RA, Jenkins TP, Griffin JL, Cantacessi C. Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications.. Sci Rep 2019 Jul 31;9(1):11121.
    doi: 10.1038/s41598-019-47204-6pubmed: 31366962google scholar: lookup
  42. Liu C, Yang L, Han Y, Ouyang W, Yin W, Xu F. Mast cells participate in regulation of lung-gut axis during Staphylococcus aureus pneumonia.. Cell Prolif 2019 Mar;52(2):e12565.
    doi: 10.1111/cpr.12565pubmed: 30729611google scholar: lookup