Gene therapy2021; 29(5); 236-246; doi: 10.1038/s41434-021-00279-1

Screening for gene doping transgenes in horses via the use of massively parallel sequencing.

Abstract: Throughout the history of horse racing, doping techniques to suppress or enhance performance have expanded to match the technology available. The next frontier in doping, both in the equine and human sports areas, is predicted to be genetic manipulation; either by prohibited use of genome editing, or gene therapy via transgenes. By using massively-parallel sequencing via a two-step PCR method we can screen for multiple doping targets at once in pooled primer sets. This method has the advantages of high scalability through combinational indexing, and the use of reference standards with altered sequences as controls. Custom software produces transgene-specific amplicons from any Ensembl-annotated genome to facilitate rapid assay design. Additional scripts batch-process FASTQ data from experiments, automatically quality-filtering sequences and assigning hits based on discriminatory motifs. We report here our experiences in establishing the workflow with an initial 31 transgene and vector feature targets. To evaluate the sensitivity of parallel sequencing in a real-world setting, we performed an intramuscular (IM) administration of a control rAAV vector into two horses and compared the detection sensitivity between parallel sequencing and real-time qPCR. Vector was detected by all assays on both methods up to 79 h post-administration, becoming sporadic after 96 h.
Publication Date: 2021-07-19 PubMed ID: 34276046PubMed Central: 190884DOI: 10.1038/s41434-021-00279-1Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The study explores a method of identifying gene doping in horses, using modern sequencing technology. It uses a two-step PCR method in parallel sequencing to detect multiple doping targets simultaneously, and tests its sensitivity through real-world applications.

Methodology

The researchers developed a screening method using a two-step Polymerase Chain Reaction (PCR) procedure. This is a DNA amplification technique that reproduces specific DNA sequences from the sample. Their method involves massively parallel sequencing, which allows them to screen for multiple doping targets at once. They pooled primer sets, sequences that start DNA replication, to provide scalability, using combinational indexing.

Quality Control and Data Processing

Reference standards with modified sequence were used as controls to ensure the accuracy and reliability of the experiment. They also employed custom software to generate transgene-specific amplicons, fragments of DNA or RNA that are produced by amplification, from any genome annotated in Ensembl, a database that provides DNA sequences and related information. This custom software allows for quick assay design. Additional scripts were used to process the data obtained from the experiments in batches. These scripts automatically filter sequences based on their quality and assign hits based on recognisable patterns.

Testing and Evaluation

To test this approach, they established a workflow with an initial set of 31 transgene and vector feature targets. A real-world setting was then simulated to evaluate the sensitivity of the parallel sequencing method. They administered an rAAV vector, a common gene therapy vector, intramuscularly into two horses and measured the detection sensitivity between this new method and real-time quantitative PCR (qPCR), a technique used to monitor the progress of the PCR reaction in real time. The vector was detected using both methods up to 79 hours post-administration, proving the potential of their new method for gene-doping detection.

Results

The results showed that the new method was effective in detecting the administered vector. However, detection became less frequent after 96 hours. This indicates that while the massively parallel sequencing PCR method can detect doping, it may be less effective for longer periods after administration. This should be considered when using this method for detection. However, it is a step forward in identifying gene doping in horses, providing a scalable and efficient means of testing.

Cite This Article

APA
Maniego J, Pesko B, Habershon-Butcher J, Huggett J, Taylor P, Scarth J, Ryder E. (2021). Screening for gene doping transgenes in horses via the use of massively parallel sequencing. Gene Ther, 29(5), 236-246. https://doi.org/10.1038/s41434-021-00279-1

Publication

ISSN: 1476-5462
NlmUniqueID: 9421525
Country: England
Language: English
Volume: 29
Issue: 5
Pages: 236-246

Researcher Affiliations

Maniego, Jillian
  • Sport and Specialised Analytical Services, LGC, Fordham, Cambridgeshire, UK.
Pesko, Bogusia
  • Sport and Specialised Analytical Services, LGC, Fordham, Cambridgeshire, UK.
Habershon-Butcher, Jocelyn
  • British Horseracing Authority, London, UK.
Huggett, Jim
  • National Measurement Laboratory, LGC, Teddington, Middlesex, UK.
  • School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, UK.
Taylor, Polly
  • Sport and Specialised Analytical Services, LGC, Fordham, Cambridgeshire, UK.
Scarth, James
  • Sport and Specialised Analytical Services, LGC, Fordham, Cambridgeshire, UK.
Ryder, Edward
  • Sport and Specialised Analytical Services, LGC, Fordham, Cambridgeshire, UK. edward.ryder@lgcgroup.com.

MeSH Terms

  • Animals
  • Doping in Sports / methods
  • Genetic Therapy
  • High-Throughput Nucleotide Sequencing
  • Horses
  • Real-Time Polymerase Chain Reaction / methods
  • Transgenes

References

This article includes 60 references
  1. Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP, Rando TA. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration.. Proc Natl Acad Sci U S A 2006 Jan 10;103(2):419-24.
    pubmed: 16387861doi: 10.1073/pnas.0504505102google scholar: lookup
  2. Williams PD, Kingston PA. Plasmid-mediated gene therapy for cardiovascular disease.. Cardiovasc Res 2011 Sep 1;91(4):565-76.
    pubmed: 21742674doi: 10.1093/cvr/cvr197google scholar: lookup
  3. Shimpo M, Ikeda U, Maeda Y, Takahashi M, Miyashita H, Mizukami H, Urabe M, Kume A, Takizawa T, Shibuya M, Ozawa K, Shimada K. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hindlimb ischemia model.. Cardiovasc Res 2002 Mar;53(4):993-1001.
    pubmed: 11922909doi: 10.1016/S0008-6363(01)00546-6google scholar: lookup
  4. Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector.. J Virol 1996 Nov;70(11):8098-108.
    pubmed: 8892935pmc: 190884doi: 10.1128/jvi.70.11.8098-8108.1996google scholar: lookup
  5. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ. In vivo gene editing in dystrophic mouse muscle and muscle stem cells.. Science 2016 Jan 22;351(6271):407-411.
    pubmed: 26721686doi: 10.1126/science.aad5177google scholar: lookup
  6. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, Kim KE, Kim JH, Kim JS. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration.. Genome Res 2017 Mar;27(3):419-426.
    pubmed: 28209587pmc: 5340969doi: 10.1101/gr.219089.116google scholar: lookup
  7. Kovac M, Litvin YA, Aliev RO, Zakirova EY, Rutland CS, Kiyasov AP, Rizvanov AA. Gene Therapy Using Plasmid DNA Encoding VEGF164 and FGF2 Genes: A Novel Treatment of Naturally Occurring Tendinitis and Desmitis in Horses.. Front Pharmacol 2018;9:978.
    pubmed: 30233367pmc: 6127648doi: 10.3389/fphar.2018.00978google scholar: lookup
  8. Watson Levings RS, Broome TA, Smith AD, Rice BL, Gibbs EP, Myara DA, Hyddmark EV, Nasri E, Zarezadeh A, Levings PP, Lu Y, White ME, Dacanay EA, Foremny GB, Evans CH, Morton AJ, Winter M, Dark MJ, Nickerson DM, Colahan PT, Ghivizzani SC. Gene Therapy for Osteoarthritis: Pharmacokinetics of Intra-Articular Self-Complementary Adeno-Associated Virus Interleukin-1 Receptor Antagonist Delivery in an Equine Model.. Hum Gene Ther Clin Dev 2018 Jun;29(2):90-100.
    pubmed: 29869540pmc: 6007808doi: 10.1089/humc.2017.142google scholar: lookup
  9. Neuhaus CP, Parent B. Gene doping-In animals? Ethical issues at the intersection of animal use, gene editing, and sports ethics. Cambridge Q Healthc Ethics. 2019;28:26u201339.
    doi: 10.1017/S096318011800035Xgoogle scholar: lookup
  10. Campbell MLH, McNamee MJ. Ethics, genetic technologies and equine sports: the prospect of regulation of a modified therapeutic use exemption policy. Sport Ethics Philos. 2020;15:1u201324.
  11. Baoutina A, Alexander IE, Rasko JE, Emslie KR. Developing strategies for detection of gene doping.. J Gene Med 2008 Jan;10(1):3-20.
    pubmed: 18081214doi: 10.1002/jgm.1114google scholar: lookup
  12. Brzeziau0144ska E, Domau0144ska D, Jegier A. Gene doping in sport - perspectives and risks.. Biol Sport 2014 Dec;31(4):251-9.
    pubmed: 25435666pmc: 4203840doi: 10.5604/20831862.1120931google scholar: lookup
  13. Oliveira RS, Collares TF, Smith KR, Collares TV, Seixas FK. The use of genes for performance enhancement: doping or therapy? Brazilian J Med Biol Res. 2011;44:1194u2013201.
  14. Garton FC, Houweling PJ, Vukcevic D, Meehan LR, Lee FXZ, Lek M, Roeszler KN, Hogarth MW, Tiong CF, Zannino D, Yang N, Leslie S, Gregorevic P, Head SI, Seto JT, North KN. The Effect of ACTN3 Gene Doping on Skeletal Muscle Performance.. Am J Hum Genet 2018 May 3;102(5):845-857.
    pubmed: 29706347pmc: 5986729doi: 10.1016/j.ajhg.2018.03.009google scholar: lookup
  15. Zhou S, Murphy JE, Escobedo JA, Dwarki VJ. Adeno-associated virus-mediated delivery of erythropoietin leads to sustained elevation of hematocrit in nonhuman primates.. Gene Ther 1998 May;5(5):665-70.
    pubmed: 9797871doi: 10.1038/sj.gt.3300648google scholar: lookup
  16. Ni W, Le Guiner C, Gernoux G, Penaud-Budloo M, Moullier P, Snyder RO. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping.. Gene Ther 2011 Jul;18(7):709-18.
    pubmed: 21390073doi: 10.1038/gt.2011.19google scholar: lookup
  17. Kalbfleisch TS, Rice ES, DePriest MS Jr, Walenz BP, Hestand MS, Vermeesch JR, O Connell BL, Fiddes IT, Vershinina AO, Saremi NF, Petersen JL, Finno CJ, Bellone RR, McCue ME, Brooks SA, Bailey E, Orlando L, Green RE, Miller DC, Antczak DF, MacLeod JN. Improved reference genome for the domestic horse increases assembly contiguity and composition.. Commun Biol 2018;1:197.
    pubmed: 30456315pmc: 6240028doi: 10.1038/s42003-018-0199-zgoogle scholar: lookup
  18. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 2019;48:D682u20138.
    pmc: 7145704
  19. Baoutina A, Coldham T, Bains GS, Emslie KR. Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system.. Gene Ther 2010 Aug;17(8):1022-32.
    pubmed: 20463760doi: 10.1038/gt.2010.49google scholar: lookup
  20. Sugasawa T, Aoki K, Yanazawa K, Takekoshi K. Detection of multiple transgene fragments in a mouse model of gene doping based on plasmid vector using TaqMan-qPCR assay. Genes. 2020;11:750.
    pmc: 7397066doi: 10.3390/genes11070750google scholar: lookup
  21. Tozaki T, Gamo S, Takasu M, Kikuchi M, Kakoi H, Hirota KI, Kusano K, Nagata SI. Digital PCR detection of plasmid DNA administered to the skeletal muscle of a microminipig: a model case study for gene doping detection.. BMC Res Notes 2018 Oct 10;11(1):708.
    pubmed: 30309394pmc: 6180624doi: 10.1186/s13104-018-3815-6google scholar: lookup
  22. Tozaki T, Ohnuma A, Takasu M, Kikuchi M, Kakoi H, Hirota K, et al. Droplet digital PCR detection of the erythropoietin transgene from horse plasma and urine for gene-doping control. Genes. 2019;10:243.
    pmc: 6471249doi: 10.3390/genes10030243google scholar: lookup
  23. Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota K, et al. Microfluidic quantitative PCR detection of 12 transgenes from horse plasma for gene doping control. Genes . 2020;11:457.
    pmc: 7230449doi: 10.3390/genes11040457google scholar: lookup
  24. de Boer EN, van der Wouden PE, Johansson LF, van Diemen CC, Haisma HJ. A next-generation sequencing method for gene doping detection that distinguishes low levels of plasmid DNA against a background of genomic DNA.. Gene Ther 2019 Aug;26(7-8):338-346.
    pubmed: 31296934pmc: 6760532doi: 10.1038/s41434-019-0091-6google scholar: lookup
  25. Salamin O, Kuuranne T, Saugy M, Leuenberger N. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping.. Drug Test Anal 2017 Nov;9(11-12):1731-1737.
    pubmed: 29045058doi: 10.1002/dta.2324google scholar: lookup
  26. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9.. Genome Res 2015 Jul;25(7):1030-42.
    pubmed: 26048245pmc: 4484386doi: 10.1101/gr.186379.114google scholar: lookup
  27. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform.. Microbiome 2014 Feb 24;2(1):6.
    pubmed: 24558975pmc: 3940169doi: 10.1186/2049-2618-2-6google scholar: lookup
  28. Wang X, Xu Z, Tian Z, Zhang X, Xu D, Li Q, Zhang J, Wang T. The EF-1u03b1 promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells.. J Cell Mol Med 2017 Nov;21(11):3044-3054.
    pubmed: 28557288pmc: 5661254doi: 10.1111/jcmm.13216google scholar: lookup
  29. Hitoshi N, Ken-ichi Y, Jun-ichi M. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991;108:193u20139.
  30. Baoutina A, Bhat S, Zheng M, Partis L, Dobeson M, Alexander IE, Emslie KR. Synthetic certified DNA reference material for analysis of human erythropoietin transgene and transcript in gene doping and gene therapy.. Gene Ther 2016 Oct;23(10):708-717.
    pubmed: 27439362doi: 10.1038/gt.2016.47google scholar: lookup
  31. Bruntraeger M, Byrne M, Long K, Bassett AR. Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes.. Methods Mol Biol 2019;1961:153-183.
    pubmed: 30912046doi: 10.1007/978-1-4939-9170-9_11google scholar: lookup
  32. Gleeson D, Sethi D, Platte R, Burvill J, Barrett D, Akhtar S, et al. High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing. Methods. 2020. https://doi.org/10.1016/j.ymeth.2020.10.011 .
  33. Lowe N, Rees JS, Roote J, Ryder E, Armean IM, Johnson G, Drummond E, Spriggs H, Drummond J, Magbanua JP, Naylor H, Sanson B, Bastock R, Huelsmann S, Trovisco V, Landgraf M, Knowles-Barley S, Armstrong JD, White-Cooper H, Hansen C, Phillips RG, Lilley KS, Russell S, St Johnston D. Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library.. Development 2014 Oct;141(20):3994-4005.
    pubmed: 25294943pmc: 4197710doi: 10.1242/dev.111054google scholar: lookup
  34. Seita Y, Tsukiyama T, Iwatani C, Tsuchiya H, Matsushita J, Azami T, Okahara J, Nakamura S, Hayashi Y, Hitoshi S, Itoh Y, Imamura T, Nishimura M, Tooyama I, Miyoshi H, Saitou M, Ogasawara K, Sasaki E, Ema M. Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body.. Sci Rep 2016 Apr 25;6:24868.
    pubmed: 27109065pmc: 4843004doi: 10.1038/srep24868google scholar: lookup
  35. Gyu00f6rgy B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F, Hanlon KS, Indzhykulian AA, Volak A, Karavitaki KD, Tamvakologos PI, Vezina M, Berezovskii VK, Born RT, O'Brien M, Lafond JF, Arsenijevic Y, Kenna MA, Maguire CA, Corey DP. Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate.. Mol Ther Methods Clin Dev 2019 Jun 14;13:1-13.
    pubmed: 30581889doi: 10.1016/j.omtm.2018.11.003google scholar: lookup
  36. Bey K, Ciron C, Dubreil L, Deniaud J, Ledevin M, Cristini J, Blouin V, Aubourg P, Colle MA. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders.. Gene Ther 2017 May;24(5):325-332.
    pubmed: 28425480doi: 10.1038/gt.2017.18google scholar: lookup
  37. Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, Beyer C, Hagg A, Thomson RE, Chen JL, Walton KL, Loveland KL, McMullen JR, Rodgers BD, Harrison CA, Lynch GS, Gregorevic P. Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice.. Sci Transl Med 2016 Jul 20;8(348):348ra98.
    pubmed: 27440729doi: 10.1126/scitranslmed.aac4976google scholar: lookup
  38. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL, Miller AD, Chamberlain JS. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6.. Mol Ther 2004 Oct;10(4):671-8.
    pubmed: 15451451doi: 10.1016/j.ymthe.2004.07.016google scholar: lookup
  39. Ghosh A, Yue Y, Duan D. Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle.. J Gene Med 2006 Mar;8(3):298-305.
    pubmed: 16385549pmc: 2581716doi: 10.1002/jgm.835google scholar: lookup
  40. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, Russell DW, Chamberlain JS. Systemic delivery of genes to striated muscles using adeno-associated viral vectors.. Nat Med 2004 Aug;10(8):828-34.
    pubmed: 15273747pmc: 1365046doi: 10.1038/nm1085google scholar: lookup
  41. Jiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD, Powell S, Keller T, McMurray M, Labelle A, Nagy D, Vargas JA, Zhou S, Couto LB, Pierce GF. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs.. Blood 2006 Jul 1;108(1):107-15.
    pubmed: 16522813doi: 10.1182/blood-2005-12-5115google scholar: lookup
  42. Stone D, Liu Y, Li ZY, Strauss R, Finn EE, Allen JM, Chamberlain JS, Lieber A. Biodistribution and safety profile of recombinant adeno-associated virus serotype 6 vectors following intravenous delivery.. J Virol 2008 Aug;82(15):7711-5.
    pubmed: 18480442pmc: 2493321doi: 10.1128/JVI.00542-08google scholar: lookup
  43. Ahmetov II, Egorova ES, Gabdrakhmanova LJ, Fedotovskaya ON. Genes and Athletic Performance: An Update.. Med Sport Sci 2016;61:41-54.
    pubmed: 27287076doi: 10.1159/000445240google scholar: lookup
  44. Schru00f6der W, Klostermann A, Distl O. Candidate genes for physical performance in the horse.. Vet J 2011 Oct;190(1):39-48.
    pubmed: 21115378doi: 10.1016/j.tvjl.2010.09.029google scholar: lookup
  45. Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing.. Drug Test Anal 2017 Sep;9(9):1456-1471.
    pubmed: 28349656doi: 10.1002/dta.2198google scholar: lookup
  46. Gu J, Mac Hugh DE, McGivney BA, Park SDE, Katz LM, Hill EW. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet J. 2010;42:569u201375.
  47. Gao Z, Herrera-Carrillo E, Berkhout B. A Single H1 Promoter Can Drive Both Guide RNA and Endonuclease Expression in the CRISPR-Cas9 System.. Mol Ther Nucleic Acids 2019 Mar 1;14:32-40.
    pubmed: 30530211doi: 10.1016/j.omtn.2018.10.016google scholar: lookup
  48. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3--new capabilities and interfaces.. Nucleic Acids Res 2012 Aug;40(15):e115.
    pubmed: 22730293pmc: 3424584doi: 10.1093/nar/gks596google scholar: lookup
  49. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.. Nucleic Acids Res 2016 Jan 4;44(D1):D733-45.
    pubmed: 26553804doi: 10.1093/nar/gkv1189google scholar: lookup
  50. Quail MA, Swerdlow H, Turner DJ, Swerdlow H. Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet. 2009;62:18.2.1u201318.2.27
  51. Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time.. Trends Biotechnol 2019 Jul;37(7):761-774.
    pubmed: 30654913doi: 10.1016/j.tibtech.2018.12.002google scholar: lookup
  52. Tenover FC, Huang MB, Rasheed JK, Persing DH. Development of PCR assays to detect ampicillin resistance genes in cerebrospinal fluid samples containing Haemophilus influenzae.. J Clin Microbiol 1994 Nov;32(11):2729-37.
    pubmed: 7852564pmc: 264151doi: 10.1128/jcm.32.11.2729-2737.1994google scholar: lookup
  53. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.. Nat Methods 2012 Mar 4;9(4):357-9.
    pubmed: 22388286pmc: 3322381doi: 10.1038/nmeth.1923google scholar: lookup
  54. Robinson JT, Thorvaldsdu00f3ttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer.. Nat Biotechnol 2011 Jan;29(1):24-6.
    pubmed: 21221095pmc: 3346182doi: 10.1038/nbt.1754google scholar: lookup
  55. Wingo TS, Kotlar A, Cutler DJ. MPD: multiplex primer design for next-generation targeted sequencing.. BMC Bioinformatics 2017 Jan 5;18(1):14.
    pubmed: 28056760pmc: 5217220doi: 10.1186/s12859-016-1453-3google scholar: lookup
  56. Ponti G, Maccaferri M, Manfredini M, Kaleci S, Mandrioli M, Pellacani G, Ozben T, Depenni R, Bianchi G, Pirola GM, Tomasi A. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients.. Clin Chim Acta 2018 Apr;479:14-19.
    pubmed: 29309771doi: 10.1016/j.cca.2018.01.007google scholar: lookup
  57. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA. Evaluation of digital PCR for absolute DNA quantification.. Anal Chem 2011 Sep 1;83(17):6474-84.
    pubmed: 21446772doi: 10.1021/ac103230cgoogle scholar: lookup
  58. Calcedo R, Franco J, Qin Q, Richardson DW, Mason JB, Boyd S, Wilson JM. Preexisting Neutralizing Antibodies to Adeno-Associated Virus Capsids in Large Animals Other Than Monkeys May Confound In Vivo Gene Therapy Studies.. Hum Gene Ther Methods 2015 Jun;26(3):103-5.
    pubmed: 26067568pmc: 4492586doi: 10.1089/hgtb.2015.082google scholar: lookup
  59. Haughan J, Jiang Z, Stefanovski D, Moss KL, Ortved KF, Robinson MA. Detection of intra-articular gene therapy in horses using quantitative real time PCR in synovial fluid and plasma.. Drug Test Anal 2020 Jun;12(6):743-751.
    pubmed: 32133745doi: 10.1002/dta.2785google scholar: lookup
  60. Thieme D, Grosse J, Lang R, Mueller RK, Wahl A. Screening, confirmation and quantification of diuretics in urine for doping control analysis by high-performance liquid chromatography-atmospheric pressure ionisation tandem mass spectrometry.. J Chromatogr B Biomed Sci Appl 2001 Jun 5;757(1):49-57.
    pubmed: 11419748doi: 10.1016/S0378-4347(01)00058-5google scholar: lookup

Citations

This article has been cited 2 times.
  1. Lu Y, Yan J, Ou G, Fu L. A Review of Recent Progress in Drug Doping and Gene Doping Control Analysis.. Molecules 2023 Jul 18;28(14).
    doi: 10.3390/molecules28145483pubmed: 37513354google scholar: lookup
  2. Tozaki T, Ohnuma A, Nakamura K, Hano K, Takasu M, Takahashi Y, Tamura N, Sato F, Shimizu K, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Hamilton NA, Nagata SI. Detection of Indiscriminate Genetic Manipulation in Thoroughbred Racehorses by Targeted Resequencing for Gene-Doping Control.. Genes (Basel) 2022 Sep 4;13(9).
    doi: 10.3390/genes13091589pubmed: 36140757google scholar: lookup