Microorganisms2023; 11(8); 1950; doi: 10.3390/microorganisms11081950

Relationship between the Cycle Threshold Value (Ct) of a Salmonella spp. qPCR Performed on Feces and Clinical Signs and Outcome in Horses.

Abstract: The objective of this retrospective study was to evaluate the clinical significance of fecal quantitative real-time polymerase chain reaction (qPCR) results when taking the cycle threshold values (Ct) into account. The study included 120 qPCR-positive fecal samples obtained from 88 hospitalized horses over a 2-year period. The mean Ct of the qPCR test was evaluated in regard to (1) clinical outcome and (2) systemic inflammatory response syndrome (SIRS) status (no SIRS, moderate SIRS, or severe SIRS) of the sampled horses. An ROC analysis was performed to establish the optimal cut-off Ct values associated with severe SIRS. The mean ± SD Ct value was significantly lower in samples (1) from horses with a fatal issue (27.87 ± 5.15 cycles) than in surviving horses (31.75 ± 3.60 cycles), and (2) from horses with severe SIRS (27.87 ± 2.78 cycles) than from horses with no (32.51 ± 3.59 cycles) or moderate (31.54 ± 3.02 cycles) SIRS. In the ROC analysis, the optimal cut-off value of Ct associated with a severe SIRS was 30.40 cycles, with an AUC value of 0.84 [95% confidence interval 0.76-0.91] and an OR of 0.64 [0.51-0.79]. Results suggest that including the Ct value in the interpretation of fecal qPCR results could improve the diagnostic value of this test for clinical salmonellosis in horses.
Publication Date: 2023-07-30 PubMed ID: 37630510PubMed Central: PMC10459194DOI: 10.3390/microorganisms11081950Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research examined the link between real-time polymerase chain reaction (qPCR) results, specifically cycle threshold values (Ct), along with clinical signs and outcomes in horses with Salmonella. Results indicate that including cycle threshold values in test interpretations could enhance the diagnostic potential for pinpointing salmonellosis in horses.

Introduction and Objectives

  • The purpose of this retrospective study was to analyze the clinical relevance of real-time polymerase chain reaction (qPCR) results in feces, specifically relating to cycle threshold values (Ct), in relation to clinical outcomes and signs in horses.
  • The subject pool included 120 qPCR-positive fecal samples from 88 hospitalized horses collected over two years.

Materials and Methods

  • The average Ct values of the qPCR tests were examined in terms of (1) the clinical outcome (survival or fatality) and (2) Systemic Inflammatory Response Syndrome (SIRS) severity of the horses from which the samples were taken.
  • A Receiver Operating Characteristic (ROC) analysis was performed to identify the ideal Ct values associated with severe SIRS.

Results

  • The research found a significant link between lower cycle threshold values and severe health outcomes. Specifically, samples from horses with a fatal outcome (with a mean Ct value of 27.87 cycles) or severe SIRS (mean Ct value of 27.87 cycles) had a significantly lower Ct value compared to surviving horses or those with moderate or no SIRS (Ct values of 31.75 cycles and 32.51 cycles or 31.54 cycles respectively).
  • The ROC analysis identified 30.40 as the ideal Ct cut-off for severe SIRS with a high area under the curve (AUC) value of 0.84 and an odds ratio (OR) of 0.64.

Conclusion

  • The findings of this study suggest that including a Ct value in the interpretation of qPCR test results could enhance their diagnostic value in detecting clinical salmonellosis – a severe, often deadly infection caused by Salmonella bacteria in horses.

Cite This Article

APA
Amory H, Cesarini C, De Maru00e9 L, Loublier C, Moula N, Detilleux J, Saulmont M, Garigliany MM, Lecoq L. (2023). Relationship between the Cycle Threshold Value (Ct) of a Salmonella spp. qPCR Performed on Feces and Clinical Signs and Outcome in Horses. Microorganisms, 11(8), 1950. https://doi.org/10.3390/microorganisms11081950

Publication

ISSN: 2076-2607
NlmUniqueID: 101625893
Country: Switzerland
Language: English
Volume: 11
Issue: 8
PII: 1950

Researcher Affiliations

Amory, Hu00e9lu00e8ne
  • Equine Clinical Department, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
Cesarini, Carla
  • Equine Clinical Department, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
De Maru00e9, Lorie
  • Equine Clinical Department, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
Loublier, Clu00e9mence
  • Equine Clinical Department, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
Moula, Nassim
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
Detilleux, Johann
  • Equine Clinical Department, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
Saulmont, Marc
  • Regional Animal Health and Identification Association (ARSIA), 2 Allu00e9e des Artisans, ZA du Biron, 5590 Ciney, Belgium.
Garigliany, Mutien-Marie
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Department of Morphology and Pathology, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
Lecoq, Laureline
  • Equine Clinical Department, Faculty of Veterinary Medicine, Bu00e2t. B41, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.
  • Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liu00e8ge, Sart Tilman, 4000 Liu00e8ge, Belgium.

Grant Funding

  • R.CFRA.4067 / University of Liu00e8ge

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 70 references
  1. Shaw SD, Stu00e4mpfli H. Diagnosis and Treatment of Undifferentiated and Infectious Acute Diarrhea in the Adult Horse.. Vet Clin North Am Equine Pract 2018 Apr;34(1):39-53.
    doi: 10.1016/j.cveq.2017.11.002pmc: PMC7134835pubmed: 29426709google scholar: lookup
  2. Popa GL, Papa MI. Salmonella spp. infection - a continuous threat worldwide.. Germs 2021 Mar;11(1):88-96.
    doi: 10.18683/germs.2021.1244pmc: PMC8057844pubmed: 33898345google scholar: lookup
  3. Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, Al Mutiri AS, Al-Alyani AM, Alseghayer MS, Almaneea AM, Albar AH, Khormi MA, Bhunia AK. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum.. Foods 2023 Apr 23;12(9).
    doi: 10.3390/foods12091756pmc: PMC10178548pubmed: 37174295google scholar: lookup
  4. Besser JM. Salmonella epidemiology: A whirlwind of change.. Food Microbiol 2018 May;71:55-59.
    doi: 10.1016/j.fm.2017.08.018pubmed: 29366469google scholar: lookup
  5. Hernandez J.A., Long M.T., Traub-Dargatz J.L., Besser T.E. Salmonellosis. In: Sellon D., Long M.T., editors. Equine Infectious Diseases. 2nd ed. Saunders Elsevier; St. Louis, MO, USA: 2014. pp. 321u2013333.
  6. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Du00f6pfer D, Fazil A, Fischer-Walker CL, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF, Torgerson PR, Havelaar AH, Angulo FJ. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis.. PLoS Med 2015 Dec;12(12):e1001921.
  7. European Centre for Disease Prevention and Control . ECDC. Annual Epidemiological Report for 2021. ECDC; Stockholm, Sweden: 2022. [(accessed on 28 July 2023)]. Salmonellosis. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/SALM_AER_2021.pdf.
  8. Arnold M, Smith RP, Tang Y, Guzinski J, Petrovska L. Bayesian Source Attribution of Salmonella Typhimurium Isolates From Human Patients and Farm Animals in England and Wales.. Front Microbiol 2021;12:579888.
    doi: 10.3389/fmicb.2021.579888pmc: PMC7876086pubmed: 33584605google scholar: lookup
  9. Espiu00e9 E, De Valk H, Vaillant V, Quelquejeu N, Le Querrec F, Weill FX. An outbreak of multidrug-resistant Salmonella enterica serotype Newport infections linked to the consumption of imported horse meat in France.. Epidemiol Infect 2005 Apr;133(2):373-6.
    doi: 10.1017/S0950268804003449pmc: PMC2870259pubmed: 15816165google scholar: lookup
  10. Rice DH, Hancock DD, Roozen PM, Szymanski MH, Scheenstra BC, Cady KM, Besser TE, Chudek PA. Household contamination with Salmonella enterica.. Emerg Infect Dis 2003 Jan;9(1):120-2.
    doi: 10.3201/eid0901.020214pmc: PMC2873743pubmed: 12533294google scholar: lookup
  11. Ward MP, Brady TH, Couu00ebtil LL, Liljebjelke K, Maurer JJ, Wu CC. Investigation and control of an outbreak of salmonellosis caused by multidrug-resistant Salmonella typhimurium in a population of hospitalized horses.. Vet Microbiol 2005 May 20;107(3-4):233-40.
    doi: 10.1016/j.vetmic.2005.01.019pubmed: 15863282google scholar: lookup
  12. Steneroden KK, Van Metre DC, Jackson C, Morley PS. Detection and control of a nosocomial outbreak caused by Salmonella newport at a large animal hospital.. J Vet Intern Med 2010 May-Jun;24(3):606-16.
  13. Rankin SC, Aceto H, Cassidy J, Holt J, Young S, Love B, Tewari D, Munro DS, Benson CE. Molecular characterization of cephalosporin-resistant Salmonella enterica serotype Newport isolates from animals in Pennsylvania.. J Clin Microbiol 2002 Dec;40(12):4679-84.
  14. Dallap Schaer BL, Aceto H, Rankin SC. Outbreak of salmonellosis caused by Salmonella enterica serovar Newport MDR-AmpC in a large animal veterinary teaching hospital.. J Vet Intern Med 2010 Sep-Oct;24(5):1138-46.
  15. Soza-Ossandu00f3n P, Rivera D, Tardone R, Riquelme-Neira R, Garcu00eda P, Hamilton-West C, Adell AD, Gonzu00e1lez-Rocha G, Moreno-Switt AI. Widespread Environmental Presence of Multidrug-Resistant Salmonella in an Equine Veterinary Hospital That Received Local and International Horses.. Front Vet Sci 2020;7:346.
    doi: 10.3389/fvets.2020.00346pmc: PMC7366320pubmed: 32754619google scholar: lookup
  16. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature.. J Clin Microbiol 2000 Jul;38(7):2465-7.
  17. Tindall BJ, Grimont PAD, Garrity GM, Euzu00e9by JP. Nomenclature and taxonomy of the genus Salmonella.. Int J Syst Evol Microbiol 2005 Jan;55(Pt 1):521-524.
    doi: 10.1099/ijs.0.63580-0pubmed: 15653930google scholar: lookup
  18. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G, Falkow S. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar typhimurium DNA microarray.. J Bacteriol 2003 Jan;185(2):553-63.
  19. . The European Union One Health 2018 Zoonoses Report.. EFSA J 2019 Dec;17(12):e05926.
    doi: 10.2903/j.efsa.2019.5926pmc: PMC7055727pubmed: 32626211google scholar: lookup
  20. . Surveillance for Salmonella in horses in Great Britain.. Vet Rec 2019 Jan 12;184(2):56-58.
    doi: 10.1136/vr.l149pubmed: 30635534google scholar: lookup
  21. Leon IM, Lawhon SD, Norman KN, Threadgill DS, Ohta N, Vinasco J, Scott HM. Serotype Diversity and Antimicrobial Resistance among Salmonella enterica Isolates from Patients at an Equine Referral Hospital.. Appl Environ Microbiol 2018 Jul 1;84(13).
    doi: 10.1128/AEM.02829-17pmc: PMC6007101pubmed: 29678910google scholar: lookup
  22. Uzal FA, Arroyo LG, Navarro MA, Gomez DE, Asu00edn J, Henderson E. Bacterial and viral enterocolitis in horses: a review.. J Vet Diagn Invest 2022 May;34(3):354-375.
    doi: 10.1177/10406387211057469pmc: PMC9254067pubmed: 34763560google scholar: lookup
  23. van Duijkeren E, Sloet van Oldruitenborgh-Oosterbaan MM, Houwers DJ, van Leeuwen WJ, Kalsbeek HC. Equine salmonellosis in a Dutch veterinary teaching hospital.. Vet Rec 1994 Sep 10;135(11):248-50.
    doi: 10.1136/vr.135.11.248pubmed: 7810046google scholar: lookup
  24. van Duijkeren E, Flemming C, Sloet van Oldruitenborgh-Oosterbaan M, Kalsbeek HC, van der Giessen JW. Diagnosing salmonellosis in horses. Culturing of multiple versus single faecal samples.. Vet Q 1995 Jun;17(2):63-6.
    doi: 10.1080/01652176.1995.9694534pubmed: 7571282google scholar: lookup
  25. van Duijkeren E, Wannet WJ, Heck ME, van Pelt W, Sloet van Oldruitenborgh-Oosterbaan MM, Smit JA, Houwers DJ. Sero types, phage types and antibiotic susceptibilities of Salmonella strains isolated from horses in The Netherlands from 1993 to 2000.. Vet Microbiol 2002 May 1;86(3):203-12.
    doi: 10.1016/S0378-1135(02)00007-Xpubmed: 11900955google scholar: lookup
  26. Maddox TW, Clegg PD, Williams NJ, Pinchbeck GL. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.. Equine Vet J 2015 Nov;47(6):756-65.
    doi: 10.1111/evj.12471pubmed: 26084443google scholar: lookup
  27. Walther B, Tedin K, Lu00fcbke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.. Vet Microbiol 2017 Feb;200:71-78.
    doi: 10.1016/j.vetmic.2016.05.017pubmed: 27291944google scholar: lookup
  28. . Salmonella and salmonellosis in horses: an overview.. Vet Rec 2018 Jun 9;182(23):659-660.
    doi: 10.1136/vr.k2525pubmed: 29884637google scholar: lookup
  29. Theelen MJ, Wilson WD, Edman JM, Magdesian KG, Kass PH. Temporal trends in prevalence of bacteria isolated from foals with sepsis: 1979-2010.. Equine Vet J 2014 Mar;46(2):169-73.
    doi: 10.1111/evj.12131pubmed: 23808819google scholar: lookup
  30. Mather AE, Reid SW, Maskell DJ, Parkhill J, Fookes MC, Harris SR, Brown DJ, Coia JE, Mulvey MR, Gilmour MW, Petrovska L, de Pinna E, Kuroda M, Akiba M, Izumiya H, Connor TR, Suchard MA, Lemey P, Mellor DJ, Haydon DT, Thomson NR. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts.. Science 2013 Sep 27;341(6153):1514-7.
    doi: 10.1126/science.1240578pmc: PMC4012302pubmed: 24030491google scholar: lookup
  31. Le Hello S, Bekhit A, Granier SA, Barua H, Beutlich J, Zaju0105c M, Mu00fcnch S, Sintchenko V, Bouchrif B, Fashae K, Pinsard JL, Sontag L, Fabre L, Garnier M, Guibert V, Howard P, Hendriksen RS, Christensen JP, Biswas PK, Cloeckaert A, Rabsch W, Wasyl D, Doublet B, Weill FX. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain.. Front Microbiol 2013;4:395.
    doi: 10.3389/fmicb.2013.00395pmc: PMC3866546pubmed: 24385975google scholar: lookup
  32. Dargatz DA, Traub-Dargatz JL. Multidrug-resistant Salmonella and nosocomial infections.. Vet Clin North Am Equine Pract 2004 Dec;20(3):587-600.
    doi: 10.1016/j.cveq.2004.07.008pubmed: 15519820google scholar: lookup
  33. Dallap Schaer BL, Aceto H, Caruso MA 3rd, Brace MA. Identification of predictors of Salmonella shedding in adult horses presented for acute colic.. J Vet Intern Med 2012 Sep-Oct;26(5):1177-85.
  34. Burgess BA, Bauknecht K, Slovis NM, Morley PS. Factors associated with equine shedding of multi-drug-resistant Salmonella enterica and its impact on health outcomes.. Equine Vet J 2018 Sep;50(5):616-623.
    doi: 10.1111/evj.12823pubmed: 29486062google scholar: lookup
  35. Ekiri AB, MacKay RJ, Gaskin JM, Freeman DE, House AM, Giguu00e8re S, Troedsson MR, Schuman CD, von Chamier MM, Henry KM, Hernandez JA. Epidemiologic analysis of nosocomial Salmonella infections in hospitalized horses.. J Am Vet Med Assoc 2009 Jan 1;234(1):108-19.
    doi: 10.2460/javma.234.1.108pubmed: 19119974google scholar: lookup
  36. Burgess BA, Morley PS. Risk factors for shedding of Salmonella enterica among hospitalized large animals over a 10-year period in a veterinary teaching hospital.. J Vet Intern Med 2019 Sep;33(5):2239-2248.
    doi: 10.1111/jvim.15579pmc: PMC6766568pubmed: 31410902google scholar: lookup
  37. Sanchez L.C. Disorders of the gastrointestinal system. In: Reed S.M., Warwick B.W., Sellon D., editors. Equine Internal Medicine. 4th ed. Elsevier; St. Louis, MO, USA: 2018. pp. 709u2013842.
  38. Pusterla N, Byrne BA, Hodzic E, Mapes S, Jang SS, Magdesian KG. Use of quantitative real-time PCR for the detection of Salmonella spp. in fecal samples from horses at a veterinary teaching hospital.. Vet J 2010 Nov;186(2):252-5.
    doi: 10.1016/j.tvjl.2009.08.022pubmed: 19766027google scholar: lookup
  39. Ekiri AB, Long MT, Hernandez JA. Diagnostic performance and application of a real-time PCR assay for the detection of Salmonella in fecal samples collected from hospitalized horses with or without signs of gastrointestinal tract disease.. Vet J 2016 Feb;208:28-32.
    doi: 10.1016/j.tvjl.2015.11.011pubmed: 26797475google scholar: lookup
  40. Ward MP, Alinovi CA, Couu00ebtil LL, Wu CC. Evaluation of a PCR to detect Salmonella in fecal samples of horses admitted to a veterinary teaching hospital.. J Vet Diagn Invest 2005 Mar;17(2):118-23.
    doi: 10.1177/104063870501700204pubmed: 15825491google scholar: lookup
  41. Cohen ND, Martin LJ, Simpson RB, Wallis DE, Neibergs HL. Comparison of polymerase chain reaction and microbiological culture for detection of salmonellae in equine feces and environmental samples.. Am J Vet Res 1996 Jun;57(6):780-6.
    pubmed: 8725799
  42. Kurowski PB, Traub-Dargatz JL, Morley PS, Gentry-Weeks CR. Detection of Salmonella spp in fecal specimens by use of real-time polymerase chain reaction assay.. Am J Vet Res 2002 Sep;63(9):1265-8.
    doi: 10.2460/ajvr.2002.63.1265pubmed: 12224858google scholar: lookup
  43. Adams DR, Stensland WR, Wang CH, O'Connor AM, Trampel DW, Harmon KM, Strait EL, Frana TS. Detection of Salmonella enteritidis in pooled poultry environmental samples using a serotype-specific real-time-polymerase chain reaction assay.. Avian Dis 2013 Mar;57(1):22-8.
    doi: 10.1637/10279-061312-Reg.1pubmed: 23678725google scholar: lookup
  44. Brizuela ME, Gou00f1i SE, Cardama GA, Zinni MA, Castello AA, Sommese LM, Farina HG. Correlation of SARS-CoV-2 Viral Load and Clinical Evolution of Pediatric Patients in a General Hospital From Buenos Aires, Argentina.. Front Pediatr 2022;10:883395.
    doi: 10.3389/fped.2022.883395pmc: PMC9301330pubmed: 35874580google scholar: lookup
  45. Roy MF, Kwong GP, Lambert J, Massie S, Lockhart S. Prognostic Value and Development of a Scoring System in Horses With Systemic Inflammatory Response Syndrome.. J Vet Intern Med 2017 Mar;31(2):582-592.
    doi: 10.1111/jvim.14670pmc: PMC5354005pubmed: 28207163google scholar: lookup
  46. Southwood LL, Lindborg S, Myers M, Aceto HW. Influence of Salmonella status on the long-term outcome of horses after colic surgery.. Vet Surg 2017 Aug;46(6):780-788.
    doi: 10.1111/vsu.12660pubmed: 28462509google scholar: lookup
  47. Moore MM, Feist MD. Real-time PCR method for Salmonella spp. targeting the stn gene.. J Appl Microbiol 2007 Feb;102(2):516-30.
  48. Piorkowski G, Baronti C, de Lamballerie X, de Fabritus L, Bichaud L, Pastorino BA, Bessaud M. Development of generic Taqman PCR and RT-PCR assays for the detection of DNA and mRNA of u03b2-actin-encoding sequences in a wide range of animal species.. J Virol Methods 2014 Jun;202:101-5.
  49. Hird DW, Casebolt DB, Carter JD, Pappaioanou M, Hjerpe CA. Risk factors for salmonellosis in hospitalized horses.. J Am Vet Med Assoc 1986 Jan 15;188(2):173-7.
    pubmed: 3700214
  50. Traub-Dargatz JL, Salman MD, Jones RL. Epidemiologic study of salmonellae shedding in the feces of horses and potential risk factors for development of the infection in hospitalized horses.. J Am Vet Med Assoc 1990 May 15;196(10):1617-22.
    pubmed: 2347754
  51. Kim LM, Morley PS, Traub-Dargatz JL, Salman MD, Gentry-Weeks C. Factors associated with Salmonella shedding among equine colic patients at a veterinary teaching hospital.. J Am Vet Med Assoc 2001 Mar 1;218(5):740-8.
    doi: 10.2460/javma.2001.218.740pubmed: 11280409google scholar: lookup
  52. Kilcoyne I, Magdesian KG, Guerra M, Dechant JE, Spier SJ, Kass PH. Prevalence of and risk factors associated with Salmonella shedding among equids presented to a veterinary teaching hospital for colic (2013-2018).. Equine Vet J 2023 May;55(3):446-455.
    doi: 10.1111/evj.13864pubmed: 35861656google scholar: lookup
  53. Alinovi CA, Ward MP, Couu00ebtil LL, Wu CC. Risk factors for fecal shedding of Salmonella from horses in a veterinary teaching hospital.. Prev Vet Med 2003 Sep 12;60(4):307-17.
    doi: 10.1016/S0167-5877(03)00143-0pubmed: 12941555google scholar: lookup
  54. Luethy D, Feldman R, Stefanovski D, Aitken MR. Risk factors for laminitis and nonsurvival in acute colitis: Retrospective study of 85 hospitalized horses (2011-2019).. J Vet Intern Med 2021 Jul;35(4):2019-2025.
    doi: 10.1111/jvim.16147pmc: PMC8295695pubmed: 33938584google scholar: lookup
  55. Kopper JJ, Willette JA, Kogan CJ, Seguin A, Bolin SR, Schott HC 2nd. Detection of pathogens in blood or feces of adult horses with enteric disease and association with outcome of colitis.. J Vet Intern Med 2021 Sep;35(5):2465-2472.
    doi: 10.1111/jvim.16238pmc: PMC8478065pubmed: 34382708google scholar: lookup
  56. Willette JA, Kopper JJ, Kogan CJ, Seguin MA, Schott HC. Effect of season and geographic location in the United States on detection of potential enteric pathogens or toxin genes in horses u22656-mo-old.. J Vet Diagn Invest 2022 May;34(3):407-411.
    doi: 10.1177/10406387211056054pmc: PMC9254065pubmed: 34763559google scholar: lookup
  57. Hensel M, Meason-Smith C, Plumlee QD, Myers AN, Coleman MC, Lawhon S, Rodrigues Hoffmann A, Rech RR. Retrospective Analysis of Aetiological Agents Associated with Pulmonary Mycosis Secondary to Enteric Salmonellosis in Six Horses by Panfungal Polymerase Chain Reaction.. J Comp Pathol 2020 Jan;174:1-7.
    doi: 10.1016/j.jcpa.2019.10.002pmc: PMC8212182pubmed: 31955794google scholar: lookup
  58. Akinola SA, Mwanza M, Ateba CN. Occurrence, Genetic Diversities And Antibiotic Resistance Profiles Of Salmonella Serovars Isolated From Chickens.. Infect Drug Resist 2019;12:3327-3342.
    doi: 10.2147/IDR.S217421pmc: PMC6817352pubmed: 31695452google scholar: lookup
  59. Murray RA, Lee CA. Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection.. Infect Immun 2000 Sep;68(9):5050-5.
  60. Buehler AJ, Wiedmann M, Kassaify Z, Cheng RA. Evaluation of invA Diversity among Salmonella Species Suggests Why Some Commercially Available Rapid Detection Kits May Fail To Detect Multiple Salmonella Subspecies and Species.. J Food Prot 2019 Apr;82(4):710-717.
    doi: 10.4315/0362-028X.JFP-18-525pubmed: 30917039google scholar: lookup
  61. El Khatib K, Hadeer RA, Saad A, Kalaydjian A, Fayad E, Mahfouz Y, Dougnon V, Daoud Z, Abdel-Massih RM. Determination of MIC, MPC, and MSW of Ilex paraguariensis against non-typhoidal Salmonella with identification of the mechanisms of resistance and pathogenicity factors.. Microb Pathog 2023 Jan;174:105905.
    doi: 10.1016/j.micpath.2022.105905pubmed: 36462580google scholar: lookup
  62. Makino S, Kurazono H, Chongsanguam M, Hayashi H, Cheun H, Suzuki S, Shirahata T. Establishment of the PCR system specific to Salmonella spp. and its application for the inspection of food and fecal samples.. J Vet Med Sci 1999 Nov;61(11):1245-7.
    doi: 10.1292/jvms.61.1245pubmed: 10593584google scholar: lookup
  63. Del Cerro A., Soto S.M., Landeras E., Gonzalez-Hevia M.A., Guijarro J.A., Mendoza M.C. PCR-based procedures in detection and DNA-fingerprinting of Salmonella from samples of animal origin. Food Microbiol. 2002;19:567u2013575. doi: 10.1006/fmic.2002.0512.
    doi: 10.1006/fmic.2002.0512google scholar: lookup
  64. Malorny B, Hoorfar J, Bunge C, Helmuth R. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard.. Appl Environ Microbiol 2003 Jan;69(1):290-6.
  65. Murugkar HV, Rahman H, Dutta PK. Distribution of virulence genes in Salmonella serovars isolated from man & animals.. Indian J Med Res 2003 Feb;117:66-70.
    pubmed: 12931840
  66. Ziemer CJ, Steadham SR. Evaluation of the specificity of Salmonella PCR primers using various intestinal bacterial species.. Lett Appl Microbiol 2003;37(6):463-9.
  67. Hartnack AK, Van Metre DC, Morley PS. Salmonella enterica shedding in hospitalized horses and associations with diarrhea occurrence among their stablemates and gastrointestinal-related illness or death following discharge.. J Am Vet Med Assoc 2012 Mar 15;240(6):726-33.
    doi: 10.2460/javma.240.6.726pubmed: 22380811google scholar: lookup
  68. Mainar-Jaime RC, House JK, Smith BP, Hird DW, House AM, Kamiya DY. Influence of fecal shedding of Salmonella organisms on mortality in hospitalized horses.. J Am Vet Med Assoc 1998 Oct 15;213(8):1162-6.
    pubmed: 9787385
  69. Jiang Q, Fu B, Chen Y, Wang Y, Liu H. Quantification of viable but nonculturable bacterial pathogens in anaerobic digested sludge.. Appl Microbiol Biotechnol 2013 Jul;97(13):6043-50.
    doi: 10.1007/s00253-012-4408-2pubmed: 22996281google scholar: lookup
  70. Porter WT, Kelley EJ, Bowers JR, Engelthaler DM. Normalization of SARS-CoV-2 viral load via RT-qPCR provides higher-resolution data for comparison across time and between patients.. Virus Res 2021 Dec;306:198604.

Citations

This article has been cited 0 times.